使用 Trubrics 收集和分析 AI 模型的用户反馈

在本文中,我们将介绍如何使用 Trubrics 平台来收集、分析和管理用户对 AI 模型的提示和反馈。通过接入 Trubrics 的框架,可以轻松将用户交互数据同步到云端,帮助开发者更好地优化和监控模型表现。

技术背景介绍

当部署大型语言模型(LLM)或聊天模型时,衡量用户体验和收集反馈至关重要。Trubrics 提供了一个平台,允许开发者记录用户输入(prompts)、模型响应以及用户反馈,这使得可以轻松跟踪模型的表现并进行改进。

核心原理解析

Trubrics 的核心功能通过 TrubricsCallbackHandler 实现,该回调处理器会自动将用户与模型的交互日志记录到 Trubrics 平台。开发者可以通过 Trubrics 的 Web 界面对这些数据进行分析。

该工具特别适合以下场景:

  • 调试模型生成的结果
  • 收集用户反馈
  • 分析模型性能
  • 为未来的改进提供数据支持

代码实现演示

环境准备与安装

首先,安装必要的 Python 包:

%pip install --upgrade --quiet trubrics langchain langchain-community

设置 Trubrics 凭证

  1. 如果您还没有 Trubrics 账户,请在这里注册
  2. 使用账户信息创建凭证,并通过环境变量进行配置:
import os

os.environ["TRUBRICS_EMAIL"] = "your-email@example.com"  # 替换为您的 Trubrics 邮箱
os.environ["TRUBRICS_PASSWORD"] = "your-password"        # 替换为您的 Trubrics 密码

接入回调处理器

示例 1:与 LLM 模型结合

以下是将 TrubricsCallbackHandler 应用到 LangChain 的 LLM 模型的示例代码,使用了 OpenAI 的接口:

import os
from langchain_openai import OpenAI
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler

# 设置 OpenAI API 密钥
os.environ["OPENAI_API_KEY"] = "sk-***"  # 替换为您的 OpenAI 密钥

# 初始化 LLM,并添加 Trubrics 回调
llm = OpenAI(callbacks=[TrubricsCallbackHandler()])

# 提供用户请求并生成响应
responses = llm.generate(["Tell me a joke", "Write me a poem"])

# 解析并打印响应
print("--> GPT's joke: ", responses.generations[0][0].text)
print("--> GPT's poem: ", responses.generations[1][0].text)

运行该示例时,Trubrics 会将用户提示、模型生成的响应以及其他元数据同步至云端。

示例 2:与聊天模型结合

假设您在创建一个更复杂的聊天模型,可以添加自定义元数据字段(如项目名称、用户 ID 等):

from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler

# 初始化 Chat 模型,并添加 Trubrics 回调
chat_llm = ChatOpenAI(
    callbacks=[
        TrubricsCallbackHandler(
            project="default",
            tags=["chat model"],
            user_id="user-id-1234",
            some_metadata={"example_key": [1, 2]},
        )
    ]
)

# 构造对话上下文
chat_responses = chat_llm.invoke(
    [
        SystemMessage(content="Every answer of yours must be about OpenAI."),
        HumanMessage(content="Tell me a joke"),
    ]
)

# 打印聊天生成的响应
print(chat_responses.content)

输出示例:

Why did the OpenAI computer go to the party?
Because it wanted to meet its AI friends and have a byte of fun!

通过这种方式,可以对聊天模型的每一次响应记录其上下文及反馈。

应用场景分析

  1. 模型性能优化:通过收集用户提示和反馈,可以发现模型生成中的常见错误,并改进 prompt 设计。
  2. 质量监控:在生产环境中,实时跟踪用户交互情况,识别潜在问题。
  3. 用户研究:分析用户的输入模式、常见问题及模型表现,从而更好地服务于用户需求。

实践建议

  • 安全性:在生产环境中,切勿硬编码账户和密钥。建议使用安全存储服务(如 AWS Secrets Manager 或环境变量)。
  • 性能监控:将用户提示和反馈作为指标之一,结合其他监控工具,全面评估模型表现。
  • 数据隐私:确保用户交互数据符合隐私合规要求,例如 GDPR。

总结

通过 Trubrics 与 LangChain 的结合,您可以轻松采集和管理用户对模型的交互和反馈数据。如果您正在构建 LLM 或聊天系统,这将是一个不可或缺的工具。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值