在本文中,我们将介绍如何使用 Trubrics 平台来收集、分析和管理用户对 AI 模型的提示和反馈。通过接入 Trubrics 的框架,可以轻松将用户交互数据同步到云端,帮助开发者更好地优化和监控模型表现。
技术背景介绍
当部署大型语言模型(LLM)或聊天模型时,衡量用户体验和收集反馈至关重要。Trubrics 提供了一个平台,允许开发者记录用户输入(prompts)、模型响应以及用户反馈,这使得可以轻松跟踪模型的表现并进行改进。
核心原理解析
Trubrics 的核心功能通过 TrubricsCallbackHandler
实现,该回调处理器会自动将用户与模型的交互日志记录到 Trubrics 平台。开发者可以通过 Trubrics 的 Web 界面对这些数据进行分析。
该工具特别适合以下场景:
- 调试模型生成的结果
- 收集用户反馈
- 分析模型性能
- 为未来的改进提供数据支持
代码实现演示
环境准备与安装
首先,安装必要的 Python 包:
%pip install --upgrade --quiet trubrics langchain langchain-community
设置 Trubrics 凭证
- 如果您还没有 Trubrics 账户,请在这里注册。
- 使用账户信息创建凭证,并通过环境变量进行配置:
import os
os.environ["TRUBRICS_EMAIL"] = "your-email@example.com" # 替换为您的 Trubrics 邮箱
os.environ["TRUBRICS_PASSWORD"] = "your-password" # 替换为您的 Trubrics 密码
接入回调处理器
示例 1:与 LLM 模型结合
以下是将 TrubricsCallbackHandler
应用到 LangChain 的 LLM 模型的示例代码,使用了 OpenAI 的接口:
import os
from langchain_openai import OpenAI
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler
# 设置 OpenAI API 密钥
os.environ["OPENAI_API_KEY"] = "sk-***" # 替换为您的 OpenAI 密钥
# 初始化 LLM,并添加 Trubrics 回调
llm = OpenAI(callbacks=[TrubricsCallbackHandler()])
# 提供用户请求并生成响应
responses = llm.generate(["Tell me a joke", "Write me a poem"])
# 解析并打印响应
print("--> GPT's joke: ", responses.generations[0][0].text)
print("--> GPT's poem: ", responses.generations[1][0].text)
运行该示例时,Trubrics 会将用户提示、模型生成的响应以及其他元数据同步至云端。
示例 2:与聊天模型结合
假设您在创建一个更复杂的聊天模型,可以添加自定义元数据字段(如项目名称、用户 ID 等):
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler
# 初始化 Chat 模型,并添加 Trubrics 回调
chat_llm = ChatOpenAI(
callbacks=[
TrubricsCallbackHandler(
project="default",
tags=["chat model"],
user_id="user-id-1234",
some_metadata={"example_key": [1, 2]},
)
]
)
# 构造对话上下文
chat_responses = chat_llm.invoke(
[
SystemMessage(content="Every answer of yours must be about OpenAI."),
HumanMessage(content="Tell me a joke"),
]
)
# 打印聊天生成的响应
print(chat_responses.content)
输出示例:
Why did the OpenAI computer go to the party?
Because it wanted to meet its AI friends and have a byte of fun!
通过这种方式,可以对聊天模型的每一次响应记录其上下文及反馈。
应用场景分析
- 模型性能优化:通过收集用户提示和反馈,可以发现模型生成中的常见错误,并改进 prompt 设计。
- 质量监控:在生产环境中,实时跟踪用户交互情况,识别潜在问题。
- 用户研究:分析用户的输入模式、常见问题及模型表现,从而更好地服务于用户需求。
实践建议
- 安全性:在生产环境中,切勿硬编码账户和密钥。建议使用安全存储服务(如 AWS Secrets Manager 或环境变量)。
- 性能监控:将用户提示和反馈作为指标之一,结合其他监控工具,全面评估模型表现。
- 数据隐私:确保用户交互数据符合隐私合规要求,例如 GDPR。
总结
通过 Trubrics 与 LangChain 的结合,您可以轻松采集和管理用户对模型的交互和反馈数据。如果您正在构建 LLM 或聊天系统,这将是一个不可或缺的工具。
如果遇到问题欢迎在评论区交流。
—END—