Weaviate Vector数据库的技术背景介绍
在现代AI应用中,存储和检索海量的向量化数据是一个关键需求。Weaviate作为一个开源的向量数据库,可以帮助我们高效地存储和查询来自机器学习模型的数据对象及其向量嵌入,从而轻松扩展到数十亿的数据对象。在本次教程中,我们将展示如何利用Weaviate和自查询检索器来构建高效的数据检索系统。
核心原理解析
我们将利用SelfQueryRetriever
,它是一个围绕Weaviate向量存储封装的检索器,能够在支持动态查询的同时,根据文档的元数据来提升检索精度。我们将具体展示如何用Python实现这种检索功能。
代码实现演示
让我们用几个简单的步骤来构建我们的Weaviate向量存储,并用它来实现一个自查询检索器。
首先,我们安装必要的依赖包:
%pip install --upgrade --quiet lark weaviate-client
然后,创建Weaviate向量存储并添加一些电影的文档数据:
from langchain_community.vectorstores import Weaviate
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
# 初始化向量嵌入
embeddings = OpenAIEmbeddings()