使用Weaviate构建自查询检索器来探索电影数据

Weaviate Vector数据库的技术背景介绍

在现代AI应用中,存储和检索海量的向量化数据是一个关键需求。Weaviate作为一个开源的向量数据库,可以帮助我们高效地存储和查询来自机器学习模型的数据对象及其向量嵌入,从而轻松扩展到数十亿的数据对象。在本次教程中,我们将展示如何利用Weaviate和自查询检索器来构建高效的数据检索系统。

核心原理解析

我们将利用SelfQueryRetriever,它是一个围绕Weaviate向量存储封装的检索器,能够在支持动态查询的同时,根据文档的元数据来提升检索精度。我们将具体展示如何用Python实现这种检索功能。

代码实现演示

让我们用几个简单的步骤来构建我们的Weaviate向量存储,并用它来实现一个自查询检索器。

首先,我们安装必要的依赖包:

%pip install --upgrade --quiet lark weaviate-client

然后,创建Weaviate向量存储并添加一些电影的文档数据:

from langchain_community.vectorstores import Weaviate
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

# 初始化向量嵌入
embeddings = OpenAIEmbeddings()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值