主要分类两次MapReduce, 最后一次MapReduce 的ReduceTask需要设置为1个
1. 自定义序列化数据类型
package com.gerry.bigdata.mapreduce.pagecountsort;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;;
public class PageCount implements WritableComparable<PageCount> { // 自定义数据类型,序列化
private String page;
private int count;
public PageCount() {
// TODO Auto-generated constructor stub
}
public void set(String page, int count) {
this.page = page;
this.count = count;
}
public String getPage() {
return page;
}
public void setPage(String page) {
this.page = page;
}
public int getCount() {
return count;
}
public void setCount(int count) {
this.count = count;
}
@Override
public int compareTo(PageCount o) {
// TODO Auto-generated method stub
return o.getCount() - this.getCount() == 0 ? this.page.compareTo(o.getPage()) : o.getCount() - this.getCount();
}
@Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeUTF(this.page);
out.writeInt(this.count);
}
@Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
this.page = in.readUTF();
this.count = in.readInt();
}
@Override
public String toString() {
// TODO Auto-generated method stub
return this.page + "," + this.count;
}
}
2. 第一次的MapReduce
package com.gerry.bigdata.mapreduce.pagecountsort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class PageCountStep1 {
public static class PageCountStep1Mapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] splits = line.split(" ");
context.write(new Text(splits[1]), new IntWritable(1));
}
}
public static class PageCountStep1Reducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text Key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int count = 0;
for (IntWritable value : values) {
count += value.get();
}
context.write(Key, new IntWritable(count));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(PageCountStep1.class);
// job.setJar("/home/gerry/pyspark/Bigdata/jars/pagecount.jar"); //在集群上运行
job.setMapperClass(PageCountStep1Mapper.class);
job.setReducerClass(PageCountStep1Reducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path inputPath = new Path("/home/gerry/pyspark/Bigdata/data/requests/input");
Path outPath = new Path("/home/gerry/pyspark/Bigdata/data/requests/countout");
// FileSystem fs = FileSystem.get(new URI("hdfs://172.16.0.2:9000/"), conf, "root");
// if (fs.exists(outPath)) {
// fs.delete(outPath, true);
// }
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outPath);
job.setNumReduceTasks(3);
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
3. 第二次的MapReduce
package com.gerry.bigdata.mapreduce.pagecountsort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class PageCountStep2 {
public static class PageCountStep2Mapper extends Mapper<LongWritable, Text, PageCount, NullWritable>{
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] splits = line.split("\t");
PageCount pageCount = new PageCount();
pageCount.set(splits[0], Integer.parseInt(splits[1]));
context.write(pageCount, NullWritable.get());
}
}
//借用mapreduce 的shuffle阶段的内部排序机制
public static class PageCountStep2Reducer extends Reducer<PageCount, NullWritable, PageCount, NullWritable>{
@Override
protected void reduce(PageCount key, Iterable<NullWritable> values,Context context)
throws IOException, InterruptedException {
context.write(key, NullWritable.get());
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(PageCountStep2.class);
// job.setJar("/home/gerry/pyspark/Bigdata/jars/pagecount.jar"); //在集群上运行
job.setMapperClass(PageCountStep2Mapper.class);
job.setReducerClass(PageCountStep2Reducer.class);
job.setMapOutputKeyClass(PageCount.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(PageCount.class);
job.setOutputValueClass(NullWritable.class);
Path inputPath = new Path("/home/gerry/pyspark/Bigdata/data/requests/countout");
Path outPath = new Path("/home/gerry/pyspark/Bigdata/data/requests/countoutput");
// FileSystem fs = FileSystem.get(new URI("hdfs://172.16.0.2:9000/"), conf, "root");
// if (fs.exists(outPath)) {
// fs.delete(outPath, true);
// }
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outPath);
job.setNumReduceTasks(1);
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
注意:本文涉及的代码都是在跨平台的Debug调试环境下,注意区分!!!