train loss和test loss的变化趋势分析

本文深入解析了深度学习训练过程中loss的变化趋势,包括trainloss和testloss的不同组合表现,及其背后的含义,如网络过拟合、数据集问题等,并提供了相应的解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

变化趋势分析
1.train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的)
2.train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化)
3.train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset)
4.train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;(减少学习率)
5.train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。(最不好的情况)
转载自:https://blog.csdn.net/u012986684/article/details/79179640
自己遇到的情况
训练GoogLeNet时遇到过第二种情况:
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值