自定义逻辑回归模型

import torch
import numpy as np
import joblib
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
#⾃定义逻辑回归模型
class LogisticRegression(object):
 
 #定义初始化⽅法
 def __init__(self, max_iters=1000, learning_rate=1e-9):
 
   #参数初始化
   self.max_iters = max_iters
   self.learning_rate = learning_rate
   self.w = None
   self.b = None
   self.n_features = None
   self.losses = []
   self.train_accs = []
   self.test_accs = []
   #保存模型
   self.best_w = None
   self.best_b = None
   self.best_train_acc = -float("inf")
   self.best_test_acc = -float("inf")
 
 #定义逻辑回归⽅法
 def _logic_regression(self, X):
 '''
 逻辑回归的正向传播过程
 '''
   return torch.sigmoid(X @ self.w + self.b)
 
 #定义损失⽅法
 def _get_loss(self, y_true, y_pred):
 '''
 ⽤MSE来衡量误差
 '''
   return ((y_true - y_pred) ** 2).mean()
 
 #定义准确率⽅法
 def _get_ac
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值