在移动互联网的早期还存在大量的流量红利,但随着流量增长、红利消退,同行激烈的竞争,使得获客成本飙升到难以承受的水平,业务增长缓慢甚至倒退。
在如此高成本、高竞争的环境下,通过互联网用户行为分析,可以实现精细化运营、从而提升用户体验与平台转化。
通过前面的系列文章,相信大家也已经认识到BI能够将存储于商业系统中的数据转换成有用的信息,能够融合线上线下的数据,且不限定分析场景,从而更好地指导决策。
从结果来说,线上的用户行为分析和BI都能帮助企业提升竞争力;从过程来说,BI能做数据分析,用户行为也是一种分析方法,那么,两者有什么区别呢?
小编将从概念、分析流程&数据来源、应用场景三方面为大家做个详细对比。
概念
什么是用户行为分析?
用户行为分析就是通过对这些数据进行统计分析,从中发现用户使用产品的规律,并将这些规律与网站的营销策略、产品功能、运营策略相结合,发现营销、产品和运营中可能存在的问题,从而让产品获得更好的增长。
用户行为在分析中被定位为各种事件,例如用户搜索是一个事件,在什么时间、什么平台上,哪一个ID、做了搜索,搜索的内容是什么——这是一个完整的事件。基于此,分析师可以在网站或者APP上定义无数个这样的事件。
而通过这些事件就可以把用户的行为串联起来观察,例如用户首次进入网站后是一个新用户,通过浏览某些页面激发他进行注册,那么注册行为就是一个事件。注册填写信息之后的搜索,或者开始下单买东西,所有这些都是用户行为的事件,可以作为用户行为分析的内容。
什么是BI?
BI主要是基于信息化时代,企业产生大量的业务数据,这些数据在不同的系统中或者存放在临时的Excel、CSV文件中,数据口径不一,需要前期花费大量时间进行数据处理。结合业务背景,BI通过分析模型能支持经营决策。核心是通过构建数据仓库平台,有效整合数据、组织数据,为分析决策提供支持并实现其价值。
BI的作用是对获取数据的多维度分析、数据的切片、数据的钻取分析等。通过ETL数据抽取、转化形成一个完整