【人工智能】5.不确定性推理

本文探讨了不确定性推理在人工智能中的重要性,包括不确定性的表示、组合证据不确定性的计算以及结论不确定性的合成。介绍了可信度方法和D-S理论,详细阐述了这两种方法中的可信度、概率分配函数以及推理步骤。此外,还提到了概率论中的贝叶斯公式及其在贝叶斯网络概率推理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、不确定推理预备知识

1.不确定性推理的含义

不确定性推理实际上是一种从不确定的初始证据出发,通过运用不确定性知识,最终推出具有一定程度的不确定性但却又是合理或基本合理的结论的思维过程。

2.不确定推理基本问题

1)不确定性的表示:
知识的不确定性表示:一个数值,表示相应知识的确定性程度,知识的静态强度。
证据的不确定性表示:证据的不确定性可以用概率来表示,也可以用可信程度等来表示。
2)组合证据不确定性的计算:
最大最小方法、概率方法和有界方法
T(E1 AND E2)= min{T(E1), T(E2)}
T(E1 OR E2)= max{T(E1), T(E2)}
T(E1 AND E2)= T(E1)*T(E2)
T(E1 OR E2)= T(E1)+ T(E2)- T(E1)*T(E2)
T(E1 AND E2)= max{0, T(E1)+T(E2)-1}
T(E1 OR E2)= min{1,T(E1)+ T(E2)}
3)结论不确定性的合成:
在不确定性推理过程中,很可能会出现由多个不同知识推出同一结论,且该结论的不确定性程度有多个不相同的情况。这时,需要采用某种算法对该结论的不确定性进行合成

二、证据理论

1.可信度方法(也叫确定性方法)

不采用严格的统计理论。使用的是一种接近统计理论的近似方法。
用专家的经验估计代替统计数据,尽量减少需要专家提供的经验数据,尽量使少量数据包含多种信息。专家数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值