几种常规的图像融合方法及其原理

本文介绍了图像融合的三种基本方法:基于常规的像素融合(最大/最小值、加权平均),多尺度融合中的拉普拉斯金字塔方法,以及基于变换域的小波和NSST变换融合。这些方法在保留图像细节、提高视觉效果和特征提取方面各有优劣,广泛应用于计算机视觉和图像处理领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前,根据图像融合的层次,将图像融合算法分为像素级图像融合,特征级图像融合和决策级图像融合。像素级图像融合处理主要是在图像像素层面上操作处理图像数据,属于基础层次的图像融合。优点是可以保持源图像更多的原始数据,比起其他融合层次来说,细节更丰富,目标空间位置相对更精确。但是,融合前需对融合源图像进行严格的点对点的图像校正、降噪和配准等图像预处理,否则会严重影响后续的融合效果。主要包括主成分分析(PCA)、脉冲耦合神经网络法(PCNN)等算法。特征级图像融合属于中间层次融合,该类方法依据已有的关于各传感器的成像特点,有针对性的提取各图像的优势特征信息,例如边缘,纹理等。主要包括模糊聚类、支持向量聚类等算法。决策级融合属于最高层次的融合,与特征级融合相比,它对源图像的处理是在提取出图像的目标特征之后,继续进行特征识别、决策分类等处理,然后联合各个源图像的决策信息进行联合推理,得到推理结果。主要包括支持向量机、神经网络等算法,决策级融合是一种高级的图像融合技术,同时其对数据的质量要求比较高,算法的复杂性极高。

1.1基于常规的图像融合方法

1.1.1 基于最大(Max)/最小值(Min)的图像融合方法

假设两幅待融合的图像 A 和 B,它们大小一致,都为 M×N,则基于像素的灰度值选大图像融合图像 F 可表示为
在这里插入图片描述

基于像素的灰度值选小图像融合方法可表示为:
在这里插入图片描述

即在融合处理时,比较源图像A(i, j)和B(i, j)中对应位置处像素的灰度值的大小,以其中灰度值大(或小)的像素(可能来自图像A或B)作为融合后图像F(i,j)处的像素。这种融合方法只是简单地选择参加融合的源图像中灰度值大或小的像素作为融合后的像素,该融合方法的适用场合非常有限。

1.1.2 基于像素加权平均(Average)的图像融合方法

像素加权平均法是图像融合中最简单的方法之一,根据两幅图像本身的灰度信息,在相同像素点对两幅图像灰度值分别赋予权值,融合图像的灰度是两幅图像灰度值的加权之和。如果是彩色图像则在三通道上重复上述操作,得到三个通道上的融合灰度。假设两幅待融合的图像 A 和 B,它们大小一致,都为 M×N,则融合图像 F 可表示为
在这里插入图片描述

其中为图像A和B的权重,且满足。基于像素加权平均的图像融合方法比较简单,运算速度快,但是在融合过程中只考虑像素点灰度大小,忽略了像素点的位置和其他因素。所以生成的融合图像无法很好保留原有图像细节特征,丢失有用信息,增加了冗余信息。造成视觉效果较差,图像难以辨别。

1.2 基于多尺度的图像融合方法

图像的金字塔[59]表示方法是一种多尺度、多分辨率表示方法,可以将图像的金字塔表示方法想象为一幅图像在不同尺度上的堆叠。图像的金字塔分解可以用来对图像中各种不同尺度的特征进行分析[30],比如:低分辨率图像可用于分析大尺度的物体,像边缘细节这样的小尺度信息则可以用高分辨率图像来进行分析。根据金字塔的构造原理,可以将基于金字塔变换的方法分为高斯金字塔、拉普拉斯金字塔、对比度金字塔等等【40】,这些变换方法均是以高斯金字塔为基础的,高斯金字塔是一个形似塔型的图像序列,该序列中的每一级图像都是将其前一级图像经过低通滤波之后再经过隔行隔列降采样得到的,所以其单边尺寸是逐层减半的,每一层的面积大小都是前一层的四分之一。其他的金字塔变换就是在高斯金字塔分解结果的基础上做进一步的操作得到的,基于金字塔变换的方法虽然简单,但是变换的过程中有上\下采样操作,所以不具备平移不变性,而且所有的图像金字塔变换均是图像的冗余分解,即在分解结果中,相邻尺度间的数据有相关性和冗余,这很有可能会使得融合结果中出现块状伪影。

1.2.1拉普拉斯金字塔

1、拉普拉斯金字塔图像分解
对源图像分别进行隔行、隔列降采样,然后利用高斯窗口函数与

### 像素级融合、特征级融合、决策级融合图像融合的关系 #### 定义与特点 像素级融合是在最基础的数据层面上进行的操作,即直接对来自不同传感器的原始图像数据中的每一个像素值进行处理和组合[^1]。此过程通常涉及复杂的计算,并且为了确保信息的一致性和准确性,在执行之前可能还需要完成诸如配准这样的预处理工作[^3]。 特征级融合发生在更高一层,它不是简单地操纵单个像素而是提取并分析每幅输入图象的关键特性或模式之后再加以综合。这种方法可以有效地减少所需存储的空间以及后续阶段所需的运算量,同时尽可能多地保存有用的信息。 决策级融合则是指在做出最终判断或者解释时才考虑多个源所提供的证据。这意味着只有当所有必要的检测/识别任务完成后才会发生真正的“融合”,此时的目标是优化整体系统的性能而不是单独某一部分的表现。 #### 应用场景 对于需要精确细节再现的任务来说,比如医学影像诊断或是某些特定类型的遥感监测项目,则更倾向于采用像素级别的方案因为它们能够提供最为详尽的结果尽管代价高昂;相反如果追求的是快速响应或者是资源受限条件下运行良好那么可能会优先选用其他两种形式之一特别是后者由于其实现起来相对容易得多而且往往能满足大多数实际需求。 ```matlab % 这是一个简单的MATLAB代码片段用于演示如何实现基于小波变换的像素级图像融合 function fusedImage = waveletFusion(image1, image2) % 对两个输入图像做离散小波分解 [cA1,cH1,cV1,cD1] = dwt2(image1,'haar'); [cA2,cH2,cV2,cD2] = dwt2(image2,'haar'); % 实施某种规则来决定哪些系数应该来自于哪个原图 (这里只是举例说明) cAFused = max(cA1, cA2); % 使用选定后的低频分量重建融合后的图像 fusedImage = idwt2(cAFused, zeros(size(cH1)), 'haar'); end ``` #### 计算成本对比 从计算复杂性的角度来看,随着抽象程度由底向上增加——也就是从像素到特征再到决策——相应的开销会逐渐减小。这是因为越往高层走所要处理的实际数值就越少,从而使得整个流程变得更加高效同时也更加易于管理。 #### 性能考量 然而值得注意的是虽然高层次的方法确实能在很多情况下带来更好的速度优势但这并不意味着其质量上就一定优于前者实际上具体表现还要取决于应用场景的具体情况例如目标物体的特点环境因素等等[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值