蓝桥杯|FBI树(Python)我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。FBI树是一种二叉树,它的结点类型也包括F结

文章介绍了如何使用递归构造FBI树,这是一种由I、B、F三种结点构成的二叉树,给定一个长度为2N的01串,通过递归拆分并确定结点类型,最后输出后序遍历序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

        我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
        1.T的根结点为R,其类型与串S的类型相同;
        2.若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
        现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历序列。

输入描述:第一行是一个整数 N ( 0 ≤ N ≤ 10 ) N(0 \le N \le 10)N(0≤N≤10),第二行是一个长度为2^N的 “01”串。

输出描述:一个字符串,即 FBI 树的后序遍历序列。

输入样例:

3

10001011

输出样例:

IBFBBBFIBFIIIFF

题目思路

        由题目可得以下信息:

        1.给定“01”字符串可以构造FBI树,长度为2^N  ==> 可以联想到二叉树每层节点数2^(k-1);

        2.FBI树(T)是由三种结点类型(I,B,F)构成;

        3.根结点R与字符串S类型相同,以输入样例为例即,F类型;

        4.字符串S左右中间分开,依次中间分开,直到最后只有一个字符(递归调用最后一层,赋值);

        5.后序遍历输出二叉树。

        因此,该题分为三块:输入,递归函数,二叉树后续输出函数。

        主要理解在递归:将给定2^N长度的字符串,依次中间分割,引入字符串下标,左右子串进行递归调用,最终一个字符不可再分,左右下标相等;此时回溯各个结点的类型,结点位置的关系:父节点p ,左右子节点:2*p ,2*p+1, 将各个结点类型存储在二叉树的数组,即也要引入一个参数p来记录层数表示层与层调用和回溯。

        递归也分三块:递归到最后一层进行并填入最后一层结点的类型,递归部分,回溯对各个结点的左右结点判断。

代码理解

##p:代表当前根节点,并用来表示左右子节点:2*P,2*P+1用于下一次递归也
##就是p的值:build_FBI(p,left,right)(p=2*P)
##left,right用来表示s字符串最左最右的下标
##s[left],s[right]字符串
def build_FBI(p,left,right):
    ##递归到最深处例如当左边left=0,right=1,mid=0,最后一次递归就是left=0,right=0;left=1,right=1:
    if left==right:
        if s[right]=='1':
            tree[p]='I'
        else: tree[p]='B'
        return
    ##不到最深处继续递归,将字符串分割,p往下表示子节点:
    mid=(left+right)//2
    build_FBI(2*p,left,mid)
    build_FBI(2*p+1,mid+1,right)
    ##直到left==right;此时对最下层的tree[P]填充,再一次向上回溯,完整tree
    if tree[2*p]=='I' and tree[2*p+1]=='I':
        tree[p]='I'
    elif tree[2*p]=='B' and tree[2*p+1]=='B':
        tree[p]='B'
    else: tree[p]='F'
##二叉树输出,后序:左右父
def postorder(p):
    if tree[2*p] !=' ':postorder(2*p)##先把左递归,完毕之后才可以进行右递归
    if tree[2*p+1] !=' ' :postorder(2*p+1)
    ##直到最里一层输出,回溯,输出
    print(tree[p],end=' ')
n=int(input())
s=input()
tree=[' ']*4400
build_FBI(1,0, len(s)-1)
postorder(1)

### FBI Tree Implementation in Python An FBI tree is not a standard data structure or algorithm within common computer science literature, which suggests that this might be either a specialized term used in specific contexts or possibly confused with another concept. However, based on typical conventions for creating trees and binary structures in Python, an interpretation can be made. For demonstration purposes, let's assume "FBI" stands for a custom type of Binary Feature Inspection tree designed to inspect features at each node as part of some decision-making process similar to how nodes operate in other types of decision trees but specifically tailored towards certain applications like those mentioned in Windmill’s capabilities such as handling different programming languages including Python[^1]. Below is an example implementation: ```python class Node: def __init__(self, feature=None, threshold=None, left=None, right=None, value=None): self.feature = feature # The attribute being inspected. self.threshold = threshold # Threshold for splitting (if applicable). self.left = left # Left child node. self.right = right # Right child node. self.value = value # Value if it's a leaf node. def build_fbi_tree(data, labels): """Builds an FBI tree recursively.""" # Base case: If all examples have same label -> create leaf node. unique_labels = set(labels) if len(unique_labels) == 1: return Node(value=unique_labels.pop()) # Another base case could involve stopping criteria related to depth, # number of samples, etc., depending on requirements. # For simplicity, choose first feature as split criterion here; # In practice, more sophisticated methods would select optimal splits. best_feature_index = 0 # Split dataset into two parts according to chosen feature. true_data, false_data = [], [] true_labels, false_labels = [], [] for i, sample in enumerate(data): if sample[best_feature_index]: true_data.append(sample) true_labels.append(labels[i]) else: false_data.append(sample) false_labels.append(labels[i]) # Recursively construct subtrees. left_subtree = build_fbi_tree(true_data, true_labels) right_subtree = build_fbi_tree(false_data, false_labels) return Node(feature=best_feature_index, left=left_subtree, right=right_subtree) def predict(node, instance): """Predict using the constructed FBI tree.""" if node.value is not None: return node.value if instance[node.feature]: return predict(node.left, instance) else: return predict(node.right, instance) ``` This code defines a simple version of what might constitute an FBI tree where decisions are made based on whether elements meet conditions defined by thresholds associated with particular features. Note that actual implementations may vary widely based on intended functionality beyond basic inspection tasks described above.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值