大数据分析常用知识

///

control group译为对照组,treatment group译为实验组。

对照组是指实验对象中一个被随机选择的子集,其中的个体没有特殊待遇。实验组是指随机选择的实验对象的子集,实验组中的个体要接受对照组所没有的某种特殊待遇。几乎所有设计较好的实验都有一个对照组和一个或多个实验组。

//

一、实验组、对照组、控制组、匹配组的概念
在研究一种条件对研究对象的影响时,所进行的除了这种条件不同以外,其他条件都相同的实验,叫做对照实验。
1、在对照实验中,实验组是接受自变量处理的对象组。
2、对照组(又叫控制组 )是不接受自变量处理的对象组。

3、实验设计中,先将被试按某些影响实验结果的因素进行匹配后在进行实验处理,匹配后的组称为匹配组。

二、实验组和对照组、控制组、匹配组的区别
1、对照组,英文为control group,又翻译为控制组,对照组等同于控制组。

2、实验组和对照组的区别为对于研究因素是否采取人为处理措施,实验组采取了人为处理手段干预某变量;对照组是没有经过处理的组别。
3、匹配组与实验组、对照组的区别是将研究因素之外的某些影响实验的因素进行匹配,使组间保持平衡。



扩展资料:
对照实验中采用的几种对照方法:
1、自身对照 :实验与对照在同一对象身上进行,不另设对照组。
实验处理前的对象状况为对照组,实验处理后的对象变化则为实验组。
2、空白对照(其中绝大部分的对照实验属于空白对照。
对照组:不加入任何研究因素(即我们所说的变量)的对象组;或者自然状态下不对研究因素做任何实验处理的对象组。
实验组:加入研究因素的对象组;或者自然状态下对研究因素进行实验处理的对象组。

//

同期群分析的目的在于透过现象找到结果,以时间维度建立同期群,除按时间维度考虑,也可以对来源渠道等维度建立同期群。

用一句话来解释同期群分析:按时间维度对用户建立分组,观察分组用户的行为特征表现。

以上图为例,是诸葛io中留存分析的一张图表,统计每日打开APP的用户,可以叫新增用户在后续7天内的留存情况,也就是产生任意行为的用户数量。

那么可以得出2个同期群,例如11月27日新增的用户是一个同期群,还有就是11月26日-12月2日期间新增的用户,次日留存率也是一个同期群。

除了留存,还可以以特定的行为建立同期群,例如某日购买了某件商品的用户或达到一定销售额的用户,同期群分析的目的在于找出有效用户的行为特征。

例如针对某日产生过购买的用户进行同期群分析,可以查看这类用户的后续活跃、留存、访问内容等相关数据,找出有效用户的影响因素。

同期群分析有什么用?

例如:9月份新增用户10万人,10月份新增用户15万人,但9月份新增用户的30日留存用户为1万人,10月份新增用户的30日留存用户也为1万人,哪个月的运营业绩更好呢?

通过同期群分析,我们可以发现9月份和10月份新增用户的留存用户是相同的,那么9月份的留存率更高,从用户质量角度考虑,9月份的运营成果更好,从有效用户角度考虑,2个月的运营成果相同,从新增用户角度考虑,10月份的运营成果更好。

同期群分析的目的在于透过现象找到结果,以时间维度建立同期群,除按时间维度考虑,也可以对来源渠道等维度建立同期群。

///

数据分析常用模型合集同期群、逻辑树、假设检验等

剩下的一些模型,其实不应叫做模型,主要是一些分析的方法和思路,这些方法并不涵盖整个互联网行业的业务线条,却在工作、生活中都能使用。

一、同期群分析
含义:相同时间段内具有共同行为特征的用户划分为同一个群体,其被称为同期群,例如2020年4月新注册用户、5月新注册用户,他们就是两个同期群。(注意,要满足同时间、同行为两个条件)

作用:更准确地进行分析

例如分析留存率,用户有其生命周期,一般刚使用的用户会比较活跃,到后期会越来越失去兴趣,如果我们只考虑总体用户的留存率,而不把用户分成不同的群体分开考虑,那么很可能会得到虚高的指标。

使用场景:

同一项产品、功能的改进,对不同同期群中的用户产生的影响是不同的,分开衡量才更能反映真实的情况。

例如:如果你为产品增加新手引导,那么只对之后新增的用户产生影响,而不会改变老用户的行为;如果你准备发放优惠券,那么对刚刚注册的用户和已长期使用的忠实用户,产生的效果也会有差别。

用户留存表示例:

对同一个同期群在不同的生命周期下的行为进行横向比较;研究相似群体的行为随时间的变化;

对不同的同期群在同一个生命周期下的行为进行纵向比较;验证产品改进是否取得了效果;

总结:

把用户分为不同的同期群,可以更为细致地分析,避免单纯地分析整体得出错误结论,针对不同同期群的行为差异,制定有针对性的营销方案。

参考:

同期群分析(Cohort Analysis) - HuZihu - 博客园 (cnblogs.com)

上面只是一个简单的介绍,因为写合集的目的是全、并且附带较好的链接,所以巩固知识请看下面。

详细讲解:

同期群分析:用户留存和用户行为的法宝 | 人人都是产品经理 (woshipm.com)

同期群分析:剖析真实的用户行为和用户价值 | 人人都是产品经理 (woshipm.com)

Python代码案例:

Python数据分析实战 | 经典的同期群分析(附实战数据和代码)-阿里云开发者社区 (aliyun.com)

二、逻辑树分析法
含义:将一个复杂的大问题,拆解成一个个小的可以解决的子问题,就像一个大树一样,它有很多个分支,那每个分支就是一个子问题。

听起来貌似说了等于没说。

逻辑树的作用是:

①全面,把能想到的下一级子问题,都写上去,逐个问题,这样不会遗漏

②由难变易,大问题往往复杂,小问题简单,方便逐个分析。

③好落实,任务先细分,逐个交给个人去负责,好很多。

其实生活中你也经常使用这个方法,不过你并没有处一本书并给他起个名字,这不就是思维导图+if else嘛。

例如:

我们想要研究如何提高销售额

当然上面的方法并不能实用,一个问题的影响因素往往非常多,首先第一步,要将无关紧要的因素排除,不然各种因素能写几百几千个,

推荐延伸阅读:

麦肯锡逻辑树——快速分析和解决问题的有效方法 - 简书 (jianshu.com)

构建逻辑树,帮你科学解决逻辑问题 | 人人都是产品经理 (woshipm.com)

三、假设检验法/归因分析法
这是一个很单纯地分析一个问题的思路,经过九年义务教育洗礼的我们都会。

流程:假设问题起因-搜集相关证据确定对不对-得出结论-{假设正确(猜对了):结束,假设错误:去看另一个问题起因,循环至找到答案}

近期网店销售额有所下降,老板让你找出原因,我们肯定也要给出相应措施。

第一步,我们取看看后台数据,是曝光量减少了,还是进店人数、还是查看详情页、下单页哪方面出问题了;

第二步,我们看到曝光数没怎么变,但进店数变少了,同时查看详情页的平均时长也变短了;

第三步:假设①价格太贵了,用户看到太贵点进来的都少---分析,发现其他店铺,也是这个价格;

假设②商品详情页不够吸引力---查看主要对手---对手居然不讲武德,商品缩略图,写着限时直降多少多少元,7天无理由退换货,可叠加什么什么活动满减券,吸引了很多下单量--查明原因--采取措施,立马修改商品缩略图,使用更为吸引人的图片。

核心:研究问题出在哪一步,要用数据说话,用数据证明你的假设是对的。

四、剩余的一些不太实用,但是又要知道的方法、思维

4.1SWOT
SWOT分析模型是一种常用的战略管理工具,用于评估一个组织或项目的优势、劣势、机会和威胁。它将内部和外部因素结合起来,帮助确定战略方向和决策。

含义:

Strengths(优势):组织或项目的内部优势和核心竞争力,例如独特的技术、专业知识、强大的品牌形象等。

Weaknesses(劣势):组织或项目的内部劣势和限制,例如缺乏资源、技术落后、不足的市场份额等。

Opportunities(机会):外部环境中的潜在机会,可以利用组织或项目的优势来获得增长和发展的机会。

Threats(威胁):外部环境中的潜在威胁,可能对组织或项目的发展和竞争力产生负面影响。

本质:就是把商业行为或者事件,粗略地分成四类:

可能在画PPT的时候,比较有用:

参考阅读:

数分狗必知必会系列 | 模型篇:为什么说SWOT和RFM其实是一个模型-腾讯云开发者社区-腾讯云 (tencent.com)

SWOT分析到底在分析啥?应该怎么写? (zhihu.com)

4.2  5w2h分析法


这分析方法,告诉我们,我们要研究一个问题,先要搞清楚问题究竟是什么,背后的原因,涉及到的人和事,先思考全面再去想办法研究。 

提出一个好的问题,就意味着问题解决了一半,很多问题都是复杂的,是牵一发而动全身,有时候真正影响大局的不是表面的问题,这种方式可以帮助我们思考地更深,找到问题根源。

4.3 麦肯锡7步分析法


与上面的 5w2h差不多,重点告诉我们,先要弄清楚问题,这个问题是不是表面那么简单,再开始分析。

4.4 PEST分析法
P:政治因素(politics),E:经济因素(economy)S:社会因素(Society) T:技术因素(Technology)

一般是高层在战略层面分析的,打工仔知道就行了。

4.5 4P营销理论
是市场营销学的理论体系中属于经典营销管理理论基础内容之一,即产品(Product)、价格(Price)、促销(Promotion)、渠道(Place)

作用:帮助企业制定和执行有效的营销策略,以实现市场目标和提升竞争力。

衍生阅读:4p理论指什么?著名营销概念深度解析! (boardmix.cn)

五、写在最后
本文作为常用分析模型的第三篇,基本总结了目前常用的分析模型及一些思维,其中很多思维,是从不同角度分析问题的思路,对这些思路了解越多,更有助于我们拓展视野、提升思维能力。

部分方法,如对比分析法、5w2h分析法,其名声大于实际使用价值,或者说我们生活中也经常用,只是我们没有系统地总结并出书命名。
原文链接:https://blog.csdn.net/TravelLight92/article/details/139415360

///

36个顶级数据分析方法与模型

好的数据分析师不仅熟练地掌握了分析工具,还掌握了大量的数据分析方法和模型。

这样得出的结论不仅具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。今天将从以下6个维度36种分析模型和方法逐个简略介绍,赶紧点赞收藏!

  • 战略与组织

  • 质量与生产

  • 营销服务

  • 财务管理

  • 人力资源

  • 互联网运营

图片

一、战略与组织

1、SWOT分析

主要应用于商业和管理领域,通过内部环境:机会与威胁,外部环境:优势与劣势两个维度,将企业的战略与之结合起来的一种分析方法。

最终依照矩阵形式排列,得出SO战略(增长型战略)、WO战略(扭转型战略)、ST战略(多种经营战略)、WT战略(防御型战略)这4种决策战略。

图片

2、PEST分析

该模型通过政治(politics)、经济(economy)、社会(society)、技术(technology)这4个因素,分析一个集团在所处的宏观环境背景下所面临的状况。

图片

3、BSC平衡计分卡

从财务、客户、内部运营、学习与成长四个角度,将组织的战略落实为可操作的衡量指标和目标值的一种新型绩效管理体系。能够有效地解决指定战略和实施战略脱节的问题,堵住“执行漏斗”。

图片

4、BCG矩阵

BCG矩阵又叫波士顿矩阵,通过“预计市场增长率”和“相对市场占有率”两个维度,去评估一个企业的整体业务情况,该方法可以使公司在资源有限的情况下,合理安排产品组合,收获或放弃萎缩产品,加大对有发展前景的产品上投资。

图片

5、GE矩阵

通过对现有业务组合进行分析,对不同事业单元的增资或减资策略做出决策。

  • 浅蓝区域:采取增长/发展战略,企业优先分配资源;

  • 浅黄区域:采取维持现状/有选择性发展战略,保护现有规模,调整企业发展方向;

  • 浅灰区域:采取退出、停止、撤退、转移战略。

图片

二、质量与生产

1、TPM

TPM中文译名安全生产维护,通过追求生产系统效率极限化,改善企业体制,追求零灾害、零不良、零故障,各部门共同推进,几乎适合所有制造业。

图片

2、TQM

TQM中文译名全面质量管理,以质量为中心,是指一个组织以全员参与为基础,目的在于通过让顾客满意和本组织所有成员及社会受益而达到长期成功的管理途径。

图片

3、六西格玛

六西格玛是运用 DMAIC (定义问题,测量问题,分析问题,改进问题,控制)战术步骤来解决问题的方法论,目前主要应用于制造业。

图片

4、PDCA

PDCA是指由计划(plan)、执行(do)、检查(check)、处理(act)这4个环节构成一个封闭的环,应用此工具,可以将每一项工作形成闭环,实现闭环管理,同时用大环套小环,旧环生成新环,层层递进,层层管理。

图片

5、AUDIT法

保证产品质量的先进质量管理控制方法。站在用户的立场,以用户的期望和要求,用专业的、最挑剔眼光对已取得合格证得可供销售的汽车产品进行质量评价鉴定,得出一个质量等级,从而评价出该产品在某一时期的质量水平。

三、营销服务

1、STP分析

在即将进入一个新的市场或进行某一项研发之前,经常使用的分析手段就是STP分析。STP分析即市场细分(Segmenting)、目标市场(Targeting)和市场定位(Positioning)。

图片

2、4Ps营销组合

4Ps营销策略,即:产品(Product) 、价格(Price) 、促销(Promotion)、渠道和分销(Place&Distribution),抓住公司的这四个P,就把市场营销内容版块基本点给立起来,企业一个简洁的市场营销体系也初步搭建起来。在经典4Ps营销策略基础上增加三个“服务性的P”,即:人员(People)、流程(Process)、环境(Physical evidence),就形成7Ps营销策略理论。7Ps营销策略多被用于服务行业。

图片

3、SPIN销售法

以客户为中心的一种销售策略和销售技巧,当你按照顺序问这四种问题时,会显著增加销量转化的可能性。

图片

4、按索夫矩阵

安索夫矩阵是以2X2的矩阵代表企业企图使收入或获利成长的四种选择,其主要的逻辑是企业可以选择四种不同的成长性策略来达成增加收入的目标。

图片

5、推销方格理论

根据推销员在推销过程中对买卖成败及与顾客的沟通重视程度之间的差别,将推销员在推销中对待顾客与销售活动的心态划分为不同类型。推销方格中显示了由于推销员对顾客与销售关心的不同程度而形成的不同的心理状态。

图片

6、哈夫模型

提出了购物场所各种条件对消费者的引力和消费者去购物场所感觉到的各种阻力决定了商圈规模大小的规律。哈夫模型区别于其他模型的不同在于模型中考虑到了各种条件产生的概率情况。

图片

四、财务管理

1、Z-SCORE模型

Z-score模型是以多变量的统计方法为基础,以破产企业为样本,通过大量的实验,对企业的运行状况、破产与否进行分析、判别的系统。

2、ABC成本法

ABC成本法是根据事物的经济 、技术等方面的主要特征,运用数理统计方法,进行统计、排列和分析,抓住主要矛盾,分清重点与一般,从而有区别地采取管理方式的一种定量管理方法。

图片

3、杜邦分析法

利用各主要财务比率指标之间的内在关系,通过建立一套财务指标的综合模型,来综合、系统地分析和评价企业财务状况及其经济效益的一种方法。

图片

由于杜邦分析法较为艰深,之前也有分析让我出门教程,如何制作杜邦分析,今天我就简单实操下,小伙伴可以简单跟着练一下。这里用到的工具是我一直都在使用的FineBI工具:

具体使用杜邦分析法的三个步骤:

第一步:从净资产收益率(ROE)开始,根据财务三大表(主要是资产负债表和利润表)逐步分解计算各指标;在Excel中准备好数据后,接着使用FineBI这个工具逐步分解计算各指标(Excel是可以直接连接FineBI的)

图片

第二步:将计算出的指标填入杜邦分析图;

第三步:逐步进行前后期对比分析,也可以进一步进行企业间的横向对比分析,分析哪些指标影响了ROE,找到原因;合并数据表后,我们就要开始计算销售净利率

添加「计算字段」,命名为「销售净利率」,输入公式:SUM_AGG(净利润)/SUM_AGG(销售收入),点击「确定」

销售净利率、资产周转率、权益乘数、净资产收益率(ROE)同样操作

4、比率分析法

财务比率法是一种用于揭示企业的财务结构、经营状况、发展趋势等内在情况的方法,是分析财务报表最基础、最常用、最有价值的分析工具,由盈利能力比率、流动比率、杠杆比率、劳动能力比率四方面构成。

图片

5、零基预算法

“零基预算”是指从零开始编制预算。传统预算侧重于在前期预算的基础上做出变更,而零基预算关注的是预算中每一个项目一直以来的成本合理性。管理者必须对其控制下的各个领域进行深入的检视来对其成本的合理性提供理由。

图片

6、净现值法

净现值法:是评价投资方案的一种方法。该方法是利用净现金效益量的总现值与净现金投资量算出净现值,然后根据净现值的大小来评价投资方案。净现值为正值,投资方案是可以接受的;净现值是负值,投资方案就是不可接受的。

图片

五、人力资源

1、360绩效考核

360度绩效考核又称为全方位考核法,是指通过员工的主管、同事、下属、顾客和员工自己等不同主体的反馈来评价员工绩效。

图片

2、盖普洛Q12测评法

盖洛普Q12测评法是针对前导指标中员工敬业度和工作环境的测量,发现12个关键问题最能反映员工的保留、利润、效率和顾客满意度的四个硬指标。

图片

3、绩效棱柱模型

绩效棱柱模型个三维绩效框架模型,用棱柱的五个方面分别代表组织绩效存在内在因果关系的五个关键要素:利益相关者的满意、利益相关者的贡献、组织战略、业务流程和组织能力。

图片

4、职位分析问卷法

职位分析问卷法是一种通用的、以统计分析为基础的方法来建立某职位的能力模型,同时运用统计推理进行职位间的比较,以确定相对报酬的方法。

图片

5、职业锚

职业锚又称职业系留点。是指当一个人不得不做出选择的时候,他无论如何都不会放弃的职业中的那种至关重要的东西或价值观。实际就是人们选择和发展自己的职业时所围绕的中心。

六、互联网运营

1、热图分析

热图分析:通过记录用户的鼠标行为,并以直观的效果呈现,从而帮助使用者优化网站布局。

图片

2、漏斗分析

漏斗分析是是一种可以直观地呈现用户行为步骤以及各步骤之间的转化率,分析各个步骤之间的转化率的分析方法。

图片

3、AB测试

AB测试强调的是同一时间维度对相似属性分组用户的测试,时间的统一性有效的规避了因为时间、季节等因素带来的影响;而属性的相似性则使得地域、性别、年龄等等其他因素对效果统计的影响降至最低。

图片

4、RFM模型

RFM模型是通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3个维度来描述该客户价值状况的客户分类模型

图片

5、购物篮分析

购物篮分析是商场常用的一种分析手段,经典案例“啤酒和纸尿裤搭配售卖”就是一种购物篮分析。

图片

6、同期群分析

同期群分析是将用户按初始行为的发生时间,划分为不同的群组,进而分析相似群组的行为如何随时间变化而变化。

///

常见的数据分析方法及其应用

常见的数据分析方法及其应用

在当今数据驱动的世界中,数据分析已成为各行业的关键组成部分。掌握多样化的数据分析方法不仅能提供珍贵的业务洞察,还能帮助制定更加明智的决策。本篇文章将在约1300字的篇幅内详述几种常见的数据分析方法,并通过实际应用示例帮助你更好地理解它们的价值。

描述性统计分析

描述性统计是数据分析的起点。它通过制表、分类、图形以及数据摘要,全面表现数据集的基本特征,使我们对数据有一个初步的概览。这些技术包括均值、中位数、众数、标准差等统计量,它们允许我们快速了解数据的集中趋势和分散趋势。

例如,在分析一个商店的日销售额数据时,描述性统计可以帮助我们识别销售额的平均值、波动范围以及高峰销售期。这对零售商确定定价策略和库存管理至关重要。

统计图表类型选择应用总结&表数据挖掘方法及应用

探索性数据分析(EDA)

探索性数据分析(EDA)是通过图形化手段和统计工具来总结数据特征。直方图、散点图、箱线图等都能在EDA中派上用场,它们为数据中可能存在的模式、趋势和异常值提供了视觉上的支持。

一个有效的EDA可以帮助营销团队通过观察客户消费习惯,发现新的目标市场。例如,通过分析不同年龄段客户的购买趋势,营销策略可以得以有效调整。

数据可视化--探索性数据分析EDA介绍

回归分析

回归分析用于研究一个或多个自变量对因变量的影响。它通过建立数学模型预测变量间关系的变化。例如,在市场营销中,回归模型可以用于预测广告投入对于销售额的影响,从而优化营销预算。

在个人职业道路上,持有CDA(Certified Data Analyst)认证可以显著提升对复杂回归模型的理解和应用能力,使你在数据分析领域更具竞争力。

R语言统计-回归篇:回归诊断

聚类分析

聚类分析通过衡量对象之间的相似性来将数据分组。它在市场细分、目标客户群识别和图像识别等应用中至关重要。比如,一家电商公司可以利用聚类分析将客户群体划分为不同的购买偏好群,从而制定更精准的促销策略。

【数据挖掘】第8章 聚类分析: 基本概念和算法

相关分析

相关分析用于衡量两个或多个变量之间的关系强度和方向。通过相关系数,我们能确定变量之间是否存在显著的统计关联。

比如,在研究某地区的气温与冰激凌销量之间的关系时,相关分析可以揭示气温升高对销量的促进作用,为冰激凌生产商的生产计划提供支持。

8个常用数据分析方法,轻松搞定各种业务分析

假设检验

假设检验是一种用来验证某一假设的统计方法。它通过对样本数据进行检验来推断总体参数是否满足某一特定条件。在药物试验中,假设检验用于验证新药的疗效是否显著优于已有治疗方法。

假设检验的Python实例

决策树

决策树是一种用于分类和回归的工具,它通过树状结构表示决策过程及其可能的后果。其简单直观的流程使其在分类问题中非常有用,如信用评分或欺诈检测。

Decision tree examples

主成分分析(PCA)

主成分分析(PCA)是一种用于降维的统计技术,通过提取数据的主要特征来缩减数据的复杂性。它在图像处理、基因数据分析中有广泛应用。例如,PCA可以用于分析大量图像数据,以提取出最具代表性的特征进行分类。

一文搞懂主成分分析图(PCA)

时间序列分析

时间序列分析专注于随时间变化的数据,如股票市场价格、经济指标等。通过这种分析,我们可以识别趋势、周期性变化以及预测未来的走势。

例如,零售业中常用时间序列分析来预测季节性需求变化,以优化库存管理和供应链策略。

应用时间序列分析——期末复盘

分类分析

分类分析旨在将数据排序到不同类别中,是市场细分和客户分类常用的方法之一。在金融行业中,分类分析可以用于识别高风险客户,帮助银行在贷款发放过程中规避风险。

浅谈数据分析法

以上这些数据分析方法具有广泛的适用性和重要价值。无论是在市场营销、金融分析,还是在医疗研究中,它们都提供了从复杂数据中提取实用信息的能力。通过选择合适的方法,企业和个人可以显著提升决策过程的科学性和合理性,同时增强竞争力。如果想要在数据分析领域深耕,CDA认证可以是提升知识和技能水平的一个有力途径,使你更好地掌握这些分析技巧。

///

7种常用数据分析模型和方法

在进行数据分析时,通常需要用到各类数据分析模型和方法,这些模型都符合商业分析的一般规律,也给数据分析提供思路。今天就来给大家分享7种常用的数据分析模型和方法,希望对大家有所帮助!

01

RFM分析模型

RFM分析模型用来对用户进行分类,并判断每类细分用户的价值。该模型通过客户的近期购买行为、消费频率以及消费金额 3 项指标来描述该客户的价值状况。通过这三个关键指标判断客户价值并对客户进行观察和分类,针对不同的特征的客户进行相应的营销策略。

02

ABC分析法

ABC分类法(Activity Based Classification) ,全称应为ABC分类库存控制法。又称帕累托分析法或主次因分析法 、ABC分析法、分类管理法、物资重点管理法、ABC管理法,平常我们也称之为“二八法则”。

标准帕累托图构成

在帕累托的分析图中,有两个纵坐标,一个横坐标,一个柱形图和一条折线图,以下图为例,X轴是按照商城各个品牌销售额从大到小排序,左侧Y轴为各品牌产品的销售额,右侧Y轴为各品牌累计销售额占总销售额的百分比。

我们按照0-80%,80%-90%,90%-100%将商品分成ABC 3个类别,然后对于这3个类别的产品做区别管理,以提高效益。

03

波士顿矩阵分析

波士顿矩阵(BCG矩阵),又称市场增长率—相对市场份额矩阵、四象限分析法、产品系列结构管理法等。

BCG矩阵从市场份额、市场增长率两个维度对产品进行描述,将组织的每个战略事业单位(SBUs)标在二维矩阵上,对产品进行分类。确定投资的产品,做出取舍,以使业务组合达到最佳经营成效。

通过业务的优化组合实现企业的现金流量平衡。波士顿矩阵可用于确定产品最优组合、定位产品制定公司层业务战略

横纵坐标轴划分就形成了4种产品:

1. 明星类产品:高增长且高市场占有率,发展前景好,竞争力强,需加大投资以支持其发展;

2. 问题类产品:高增长但低市场占有率,发展前景好但市场开拓不足,需谨慎投资;

3. 现金牛产品:低增长但高市场占有率,成熟市场的领导者,应降低投资,维持市场占有率并延缓衰退;

4. 瘦狗类产品:低增长且低市场占有率,利润率低甚至亏损,应采取撤退战略。

04

归因分析

随着移动互联网的兴起,业务的形态越来越复杂,站内归因(也常被称作“坑位归因”)的需求日趋增多。

以自营电商为例:同样的一个商品,可能会在站内多处“坑位”产生曝光,比如:首页 Banner 的特卖活动页、商品详情页的相关推荐、购物车页面下方的推荐列表中。运营人员需要知道这些“坑位”对商品最终成单产生的“贡献”分别是多大,从而指导站内的商品运营工作,例如将主推的商品推至成单贡献度高的坑位中,给予更多的曝光从而带来更多的转化。

一般来说有4种归因首次归因、末次归因、线性归因、位置归因。

05

购物篮分析

据说上个世纪九十年代,沃尔玛超市的管理人‎‎员发现了一‎‎个奇怪现象,同一个订单里经常会同时出现婴儿纸尿裤和啤酒,并且购买者大多为父亲。有人就进行了分析,发现从时间上,周末比工作日购买纸尿裤喝啤酒的频率更多;其次,爸爸们喜欢看体育节目,而且更爱边喝啤酒边看,且美国的体育节目多在周末扎堆。所以,当周末母亲需要给孩子换纸尿裤时,通常会让正在看球的奶爸去买。奶爸出去买纸尿裤,会顺便带些啤酒回来。

无论这个案例真假,但他带来的启发却是巨大的,这让我们意识到可以通过研究用户消费数据,将两种看上去完全没关系的产品关联在一起,这就叫做商品关联分析法,也叫作“购物篮分析”。

06

AARRR用户运营分析

AARRR模型的实质是一个用户生命周期模型,关注用户获取(Acquisition)、激活(Activation)、留存(Retention)、收入(Revenue)和自传播(Refer)这五个方面,描述了用户从了解一个产品或服务到成为忠实用户的整个过程,对应于产品生命周期中的五个阶段。

07

用户画像分析

用户画像分析(User Profiling Analysis)是一种市场研究技术,它通过收集和分析用户的各种数据来创建用户的详细描述,这些描述通常包括用户的行为、偏好、心理特征、生活方式等。用户画像的目的是为了更好地理解目标客户群体,以便为他们提供更加个性化的产品和服务,提高营销效率和客户满意度。

用户画像分析用一句话来总结就是:用户信息标签化。

用户画像分析通常包括以下几个步骤:

1. 数据收集:通过各种渠道收集用户数据,包括但不限于社交媒体行为、在线购买历史、网站浏览记录、客户反馈、调查问卷等。

2. 数据整合:将收集到的数据整合在一起,形成一个统一的视图,以便于分析。

3. 分段:根据用户的共同特征将用户分为不同的群体或细分市场。

4. 画像创建:为每个用户群体创建详细的画像,包括他们的行为模式、购买习惯、价值观念等。

应用:利用用户画像来指导产品开发、市场营销策略、客户服务等业务活动。

///

浅谈IVD统计系列--t检验及其应用

t分布介绍

t分布最早是由英国统计学家Gosset W S在1908年以笔名“student”发表论文,证明

图片

服从自由度ν=n-1的t分布,故t分布也称为Student t分布(Student’s t-distribution),t分布主要用于总体均数的区间估计和t检验等。

图片

图片

是样本的均数。

图片

是总体的均数,

图片

是均数的标准误。关于总体参数和样本参数的区别我已经在第一篇中详细阐述了,这里不再赘述。怎么来理解呢?比如我们抽了100个样本,每个样本的样本含量为20。因此我们可以得到100个样本均数和标准差。我们可以将这100个样本均数当做新的变量值,再求均数,就得到

图片

。样本均数的标准差也称为均数的标准误,表示为

图片

,通常用标准误来反应抽样误差。其中

图片

,我们可以看到,当样本含量n越大,均数标准误越小,抽样误差越小,表示用样本均数来估计总体均数时的可靠性越大。

在本系列第二篇中(浅谈IVD统计系列--资料类型及正态分布),我介绍了标准正态分布(Z分布),Z分布是正态分布通过标准正态分布转化而来。其实t分布在Z分布的基础上,再一次进行了转换。可以将t分布简单理解为,以样本均数替代了Z分布中的X,以标准误替代了σ。即t=

图片

。其分布曲线如下图所示。可以看到t分布只有一个参数,即自由度,并且t分布不是一条曲线,而是一簇曲线,当自由度不同时,曲线的形状不同。当自由度为∞时,t分布就是标准正态分布(Z分布),标准正态分布是t分布的特例。

图片

t分布的应用

01

总体均数可信区间的计算

根据总体标准差σ是否已知和样本含量n的大小,总体均数可信区间的估计方法通常有t分布和z分布两种。

统计应用的本质是统计量的换算,我们最常用的就是将t值或者其他统计量换算成P值,做显著性检验,或者将P值换算成t值或者其他统计量,来计算均数的置信区间。为了方便应用,统计学家编制了不同自由度下t值与相应概率关系的t界值表。因此,当我们知道了样本量,置信水平,就知道了对应的t值。t界值表中,横标目为自由度ν,纵标目为尾部概率P或α。一侧尾部面积称为单尾概率,其对应的t界值用

图片

表示;双侧尾部面积之和称为双尾概率,其对应的t界值用

图片

表示。由于t分布以0为中心左右对称,故t界值表中只列出了正值,若计算的t值为负值则用其绝对值查表。

同一自由度的双侧概率P为单侧概率P的两倍。那么在什么情况下选择用双侧,什么情况下选择用单侧呢?选择单、双侧界值应依据专业知识确定。例如,体质指数(BMI)无论过高或过低均属异常,参考值范围应是双侧;而有些指标只有在过大或者过小时为异常,如肺活量过低为异常,因此只需确定下限,因此参考值范围应是单侧。

对于t分布,t=

图片

,通过这个公式的换算,知道样本均值,标准差,样本含量就可以算出总体均数的可信区间。

1) σ未知:按t分布。P=1-α,因此总体均数的双侧(1-α)可信区间为

图片

2) σ已知或者σ未知但n足够大(n>50),按z分布计算置信区间。上面我们已经提到过,当自由度趋近于无穷时,t分布就是标准正态分布,一般认为t分布在样本量较小时更具有统计优势,t分布的发现使得小样本统计推断成为可能。Z分布在样本量较大时具有优势,但是这个界限没有一个统一的说法,有的认为以n=60为界,有的认为以n=40为界,还有的以n=100为界的。

按Z分布进行计算时,总体均数的双侧(1-α)可信区间可以简写为

图片

或者

图片

02

t检验

关于假设检验的目的,我在浅谈统计系列之基本概念中已经详细阐述过,一句话总结,就是比较两个样本之间有无显著性差异。那t检验的实质就是将样本统计量换算成t值,再将t值换算成最直观明了的P值,从而判断两个样本之间有无显著性差异。

1)假设检验的基本步骤

A. 建立检验假设,确定检验水准。假设有两种:一种是原假设、无效假设或者零假设,记为H0,假设样本所代表的总体参数(如未知总体均数

图片

)与已知总体参数(如总体均数

图片

)相等,H0:

图片

=

图片

;另一种是备择假设,也称对立假设,记为H1,是与H0相联系、对立的假设,H1:

图片

。H1假设直接体现了所进行的假设检验是双侧检验还是单侧检验。若H1是

图片

,或

图片

,则此检验为单侧检验,其不仅考虑是否有差别,还考虑差别的方向。若H1为

图片

,则此检验为双侧检验。

检验水准也称为显著性水准,是预先规定的判断小概率事件的概率尺度,记为α。在实际工作中,α通常取0.05或0.01,即若某个事件发生的概率小于0.05或0.01,认为其是小概率事件。

B. 计算检验统计量

根据研究目的、设计方案、变量或资料类型及其分布特征、假设检验方法适用条件等选择检验统计量。比如通常我们用的比较多的有t检验,F检验,卡方检验等,那么计算的检验统计量分别为t值,F值,

图片

值。

C. 确定P值,作出推断结论

求出检验统计量后,查附表中相应的统计界值表即可得出概率P值,从而作出统计推断。若P>α,按α检验水准不拒绝H0,认为差异无统计学意义,即无显著性差异;若P≤α,拒绝H0,接受H1,两个样本间有显著性差异。

2)t检验的应用条件和类型

首先,需要明确的是t检验所适用的资料类型是计量资料。其次,应用t检验时,各样本均来自于其总体的随机样本;再者,各样本均来自于正态分布总体,如果不确定,需要做正态性检验;最后两独立样本均数比较时,要求两总体方差相等。

A. 单样本定量资料的t检验

指的是样本均数与总体均数比较的t检验,又称单样本资料的t检验,实际上是推断该样本来自的总体均数

图片

与已知的某一总体均数

图片

有无差别。

具体应用也是根据根据假设检验的三大步骤进行。

第一步:建立检验假设,确定检验水准。

第二步:计算检验统计量。t=

图片

。将样本均数

图片

,和总体均数

图片

,标准误

图片

代入上式,算出检验统计量t值。

第三步:根据自由度

图片

,检验水准α(0.01或0.05)来查t界值,用算出的t值和t界值进行比较,若t值大于t界值,则P小于检验水准,拒绝原假设,两样本差异显著。反之,无显著性差异。

B. 配对设计定量资料的t检验

所谓的“配对”实际上就是“一对一”。通常有两种类型,“异体配对”和“自身配对”。“异体配对”是指将某些重要特征相似的每两个受试对象配成一对,将每对受试对象进行随机分配后,分别给予两种不同的处理。“自身配对”是指同一受试对象分别接受两种处理。比如为了测试某减肥药的效果,让15位身体偏胖的人服用该药,通过测量服药前和服药后的体重,检验该药有无效果。

同样的,按照假设检验的三大步骤进行。不过,配对检验的检验假设与上述有所不同。配对设计资料的分析着眼于每一对中两个观察值之差,这些差值构成一组资料,用t检验推断差值的总体均数是否为“0”,检验假设为H0:

图片

:,即差数的总体均数为“0”;H1:

图片

:,即差值的总体均数不等于“0”,当H0成立时,检验统计量

图片

,其中

图片

为差值的均数,

图片

为差值的标准差,n为对子数。

除了上述两种t检验外,还有两独立样本均数比较的t检验这部分比较复杂,会在下一篇中连同SPSS软件实现详细说明。

//

t分布表怎么看单侧界限

查看t分布表时,首先要明确查询的具体自由度(n或df值)和分位数(p值)。表的左侧第一列通常是自由度(df值),上方一行则是p值。在查找时,先定位到第一列的自由度,例如自由度为6的行。然后,在同一行中找到双侧95%(单侧97.5%)概率对应的t值,这个值就是自由度为6时95%的双侧t值,也是97.5%的单侧t值,数值为2.447。

如果需要查找不同自由度下的t值,可以重复上述步骤,找到相应的自由度行,然后根据需要的p值(如95%或97.5%)来确定t值。例如,当自由度为10时,95%的双侧t值约为2.228,97.5%的单侧t值同样为2.228。

值得注意的是,t分布表中的t值与自由度紧密相关,不同的自由度会导致t值的大小不同。在进行假设检验时,通过查找t分布表可以确定临界值,以此来判断样本统计量是否在可接受范围内。

此外,t值的大小还与置信水平有关。一般来说,置信水平越高,对应的t值也越大。例如,99%的置信水平对应的t值会大于95%的置信水平,但在相同的自由度下,单侧t值会大于双侧t值。

综上所述,在使用t分布表时,关键步骤包括确定自由度和分位数,然后在表中找到相应的t值。了解t值与自由度和置信水平之间的关系,可以帮助更好地进行统计分析。

///

//

///

///

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值