使用Faster-Rcnn进行目标检测(实践篇)

本文详细介绍了如何使用 Faster R-CNN 进行目标检测任务的全过程,包括环境搭建、数据集准备、代码修改及训练注意事项等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理

上一篇文章,已经说过了,大家可以参考一下,Faster-Rcnn进行目标检测(原理篇)

实验

我使用的代码是python版本的Faster Rcnn,官方也有Matlab版本的,链接如下:

py-faster-rcnn(python)

faster-rcnn(matlab)

环境配置

按照官方的README进行配置就好,不过在这之前大家还是看下硬件要求吧

  • For training smaller networks (ZF, VGG_CNN_M_1024) a good GPU (e.g., Titan, K20, K40, …) with at least 3G of memory suffices

  • For training Fast R-CNN with VGG16, you’ll need a K40 (~11G of memory)

  • For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)

我的是环境是Ubuntu 14.04 + Titan X(12GB) + cuda 7.0 + cudnn V3

1 Caffe环境配置

Caffe环境需要python layer的支持,在你的Caffe的Makefile.config中去掉以下的注释

  • WITH_PYTHON_LAYER := 1
  • USE_CUDNN := 1

2 安装python库依赖

cython,python-opencveasydict

pip install cython
pip install python-opencv
pip install easydict

3 克隆py-faster-rcnn源代码

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

4 编译cython模块

cd $FRCN_ROOT/lib
make 

5 编译Caffepycaffe

cd $FRCN_ROOT/caffe-fast-rcnn
make -j8 && make pycaffe

-j8的选项是进行多核编译,可以加速编译过程,推荐使用

数据集

参考VOC2007的数据集格式,主要包括三个部分:

  • JPEGImages

  • Annotations

  • ImageSets/Main

JPEGImages —> 存放你用来训练的原始图像

Annotations —> 存放原始图像中的Object的坐标信息,XML格式

ImageSets/Main —> 指定用来train,trainval,val和test的图片的编号

这部分非常重要,数据集做不好直接导致代码出现异常,无法运行,或者出现奇怪的错误,我也是掉进了很多坑,爬上来之后才写的这篇博客,希望大家不要趟我趟过的浑水!每一个部分我都会细说的!

JPEGImages

这个没什么,直接把你的图片放入就可以了,但是有三点注意:

  • 编号要以6为数字命名,例如000034.jpg

  • 图片要是JPEG/JPG格式的,PNG之类的需要自己转换下

  • 图片的长宽比(width/height)要在0.462-6.828之间,就是太过瘦长的图片不要

0.462-6.828是我自己实验得出来的,就我的数据集而言是这个比例,总之长宽比太大或者太小的,你要注意将其剔除,否则可能会出现下面我实验时候出的错:

Traceback (most recent call last):
File “/usr/lib/python2.7/multiprocessing/process.py”, line 258, in _bootstrap
self.run()
File “/usr/lib/python2.7/multiprocessing/process.py”, line 114, in run
self._target(*self._args, **self._kwargs)
File “./tools/train_faster_rcnn_alt_opt.py”, line 130, in train_rpn
max_iters=max_iters)
File “/home/work-station/zx/py-faster-rcnn/tools/../lib/fast_rcnn/train.py”, line 160, in train_net
model_paths = sw.train_model(max_iters)
File “/home/work-station/zx/py-faster-rcnn/tools/../lib/fast_rcnn/train.py”, line 101, in train_model
self.solver.step(1)
File “/home/work-station/zx/py-faster-rcnn/tools/../lib/rpn/anchor_target_layer.py”, line 137, in forward
gt_argmax_overlaps = overlaps.argmax(axis=0)
ValueError: attempt to get argmax of an empty sequence

Google给出的原因是 Because the ratio of images width and heights is too small or large,这个非常重要

Annotations

faster rcnn训练需要图像的bounding box信息作为监督(ground truth),所以你需要将你的所有可能的object使用框标注,并写上坐标,最终是一个XML格式的文件,一个训练图片对应Annotations下的一个同名的XML文件

参考官方VOC的Annotations的格式:

<annotation>
    <folder>VOC2007</folder> #数据集文件夹
    <filename>000105.jpg</filename> #图片的name
    <source> #注释信息,无所谓有无
        <database>The VOC2007 Database</database>
        <annotation>PASCAL VOC2007</annotation>
        <image>flickr</image>
        <flickrid>321862192</flickrid>
    </source>
    <owner> #注释信息,无所谓有无
        <flickrid>Eric T. Johnson</flickrid>
        <name>?</name>
    </owner>
    <size> #图片大小
        <width>500</width>
        <height>333</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object> #多少个框就有多少个object标签
        <name>boat</name> #bounding box中的object的class name
        <pose>Frontal</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>22</xmin> #框的坐标
            <ymin>1</ymin>
            <xmax>320</xmax>
            <ymax>314</ymax>
        </bndbox>
    </object>
    <object>
        <name>person</name>
        <pose>Frontal</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>202</xmin>
            <ymin>71</ymin>
            <xmax>295</xmax>
            <ymax>215</ymax>
        </bndbox>
    </object>
    <object>
        <name>person</name>
        <pose>Frontal</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>170</xmin>
            <ymin>107</ymin>
            <xmax>239</xmax>
            <ymax>206</ymax>
        </bndbox>
    </object>
</annotation>

这里有一个非常好用的工具VOC框图工具,可以自动帮你生成需要的XML格式,实际中发现格式基本无误,只有小的地方需要改动下,大家对比下就知道怎么改了,我是在linux下借助sed修改的,这个不难

Imagesets/Main

因为VOC的数据集可以做很多的CV任务,比如Object detection, Semantic segementation, Edge detection等,所以Imageset下有几个子文件夹(Layout, Main, Segementation),我们只要修改下Main下的文件就可以了(train.txt, trainval.txt, val.txt, test.txt),里面写上你想要进行任务的图片的编号

将上述你的数据集放在py-faster-rcnn/data/VOCdevkit2007/VOC2007下面,替换原始VOC2007的JPEGIMages,Imagesets,Annotations

原始VOC2007下载地址: VOC20007数据集

代码修改

工程目录介绍

  • caffe-fast-rcnn —> caffe框架

  • data —> 存放数据,以及读取文件的cache

  • experiments —>存放配置文件以及运行的log文件,配置文件

  • lib —> python接口

  • models —> 三种模型, ZF(S)/VGG1024(M)/VGG16(L)

  • output —> 输出的model存放的位置,不训练此文件夹没有

  • tools —> 训练和测试的python文件

修改源文件

faster rcnn有两种各种训练方式:

  • Alternative training(alt-opt)

  • Approximate joint training(end-to-end)

推荐使用第二种,因为第二种使用的显存更小,而且训练会更快,同时准确率差不多,两种方式需要修改的代码是不一样的,同时faster rcnn提供了三种训练模型,小型的ZFmodel,中型的VGG_CNN_M_1024和大型的VGG16,论文中说VGG16效果比其他两个好,但是同时占用更大的GPU显存(~11GB)

我使用的是VGG model + alternative training,需要检测的类别只有一类,加上背景所以总共是两类(background + captcha)

1 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt

layer {  
  name: 'data'  
  type: 'Python'  
  top: 'data'  
  top: 'rois'  
  top: 'labels'  
  top: 'bbox_targets'  
  top: 'bbox_inside_weights'  
  top: 'bbox_outside_weights'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  
layer {  
  name: "cls_score"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "cls_score"  
  param { 
  lr_mult: 1.0
  }  
  param {
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 2 #按训练集类别改,该值为类别数+1  
    weight_filler {  
      type: "gaussian"  
      std: 0.01  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  
layer {  
  name: "bbox_pred"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "bbox_pred"  
  param { 
  lr_mult: 1.0 
  }  
  param { 
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 8 #按训练集类别改,该值为(类别数+1)*4,四个顶点坐标  
    weight_filler {  
      type: "gaussian"  
      std: 0.001  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  

2 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_rpn_train.pt

layer {  
  name: 'input-data'  
  type: 'Python'  
  top: 'data'  
  top: 'im_info'  
  top: 'gt_boxes'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  

3 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt

layer {  
  name: 'data'  
  type: 'Python'  
  top: 'data'  
  top: 'rois'  
  top: 'labels'  
  top: 'bbox_targets'  
  top: 'bbox_inside_weights'  
  top: 'bbox_outside_weights'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  
layer {  
  name: "cls_score"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "cls_score"  
  param { 
  lr_mult: 1.0 
  }  
  param { 
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 2 #按训练集类别改,该值为类别数+1  
    weight_filler {  
      type: "gaussian"  
      std: 0.01  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  
layer {  
  name: "bbox_pred"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "bbox_pred"  
  param { 
  lr_mult: 1.0
  }  
  param { 
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 8 #按训练集类别改,该值为(类别数+1)*4,四个顶点坐标  
    weight_filler {  
      type: "gaussian"  
      std: 0.001  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  

4 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_rpn_train.pt

layer {  
  name: 'input-data'  
  type: 'Python'  
  top: 'data'  
  top: 'im_info'  
  top: 'gt_boxes'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  

5 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt

layer {  
  name: "cls_score"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "cls_score"  
  inner_product_param {  
    num_output: 2 #按训练集类别改,该值为类别数+1  
  }  
}  

6 py-faster-rcnn/lib/datasets/pascal_voc.py

class pascal_voc(imdb):  
    def __init__(self, image_set, year, devkit_path=None):  
        imdb.__init__(self, 'voc_' + year + '_' + image_set)  
        self._year = year  
        self._image_set = image_set  
        self._devkit_path = self._get_default_path() if devkit_path is None \  
                            else devkit_path  
        self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)  
        self._classes = ('__background__', # always index 0  
                         captcha' # 有几个类别此处就写几个,我是两个
                      )  

line 212

cls = self._class_to_ind[obj.find('name').text.lower().strip()]  

如果你的标签含有大写字母,可能会出现KeyError的错误,所以建议全部使用小写字母

7 py-faster-rcnn/lib/datasets/imdb.py

将append_flipped_images函数改为如下形式:

def append_flipped_images(self):  
        num_images = self.num_images  
        widths = [PIL.Image.open(self.image_path_at(i)).size[0]  
                  for i in xrange(num_images)]  
        for i in xrange(num_images):  
            boxes = self.roidb[i]['boxes'].copy()  
            oldx1 = boxes[:, 0].copy()  
            oldx2 = boxes[:, 2].copy()  
            boxes[:, 0] = widths[i] - oldx2 - 1  
            print boxes[:, 0]  
            boxes[:, 2] = widths[i] - oldx1 - 1  
            print boxes[:, 0]  
            assert (boxes[:, 2] >= boxes[:, 0]).all()  
            entry = {'boxes' : boxes,  
                     'gt_overlaps' : self.roidb[i]['gt_overlaps'],  
                     'gt_classes' : self.roidb[i]['gt_classes'],  
                     'flipped' : True}  
            self.roidb.append(entry)  
        self._image_index = self._image_index * 2  

到此代码修改就搞定了

训练

训练前还需要注意几个地方

1 cache问题

假如你之前训练了官方的VOC2007的数据集或其他的数据集,是会产生cache的问题的,建议在重新训练新的数据之前将其删除

(1) py-faster-rcnn/output
(2) py-faster-rcnn/data/cache

2 训练参数

py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage_fast_rcnn_solver*.pt

base_lr: 0.001
lr_policy: 'step'
step_size: 30000
display: 20
....

迭代次数在文件py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py中进行修改

line 80

max_iters = [80000, 40000, 80000, 40000]

分别对应rpn第1阶段,fast rcnn第1阶段,rpn第2阶段,fast rcnn第2阶段的迭代次数,自己修改即可,不过注意这里的值不要小于上面的solver里面的step_size的大小,大家自己修改吧

开始训练:

cd py-faster-rcnn
./experiments/scripts/faster_rcnn_alt_opt.sh 0 VGG16 pascal_voc 

指明使用第一块GPU(0),模型是VGG16,训练数据是pascal_voc(voc2007),没问题的话应该可以迭代训练了

结果

训练完毕,得到我们的训练模型,我们就可以使用它来进行我们的object detection了,具体是:
1 将py-faster-rcnn/output/faster_rcnn_alt_opt/voc_2007_trainval/VGG16_faster_rcnn_final.caffemodel,拷贝到py-faster-rcnn/data/faster_rcnn_models

2 将你需要进行test的images放在py-faster-rcnn/data/demo

3 修改py-faster-rcnn/tools/demo.py文件


CLASSES = ('_background_', 'captcha') #参考你自己的类别写


NETS = {'vgg16': ('VGG16',
'VGG16_faster_rcnn_final.caffemodel'), #改成你训练得到的model的name
'zf': ('ZF',
'ZF_faster_rcnn_final.caffemodel')
}

im_names = ['1559.jpg','1564.jpg']  # 改成自己的test image的name

上几张我的检测结果吧

1

2

3

参考

1 faster rcnn 做自己的数据集

2 faster rcnn 教程

3 使用ZF训练自己的faster rcnn model

4 一些错误的解决方法

### Faster R-CNN用于SAR目标检测的代码实现 #### 1. 数据准备与预处理 在 SAR 图像目标检测任务中,数据集通常由高分辨率的合成孔径雷达图像组成。这些图像可能具有不同的光照条件、噪声水平以及复杂的背景干扰。为了提高模型性能,在加载数据之前需要进行必要的预处理。 以下是典型的 PyTorch 数据管道设置: ```python import torch from torchvision import transforms from datasets.sar_dataset import SARDataset # 假设有一个自定义的数据集类 # 定义数据增强和标准化变换 data_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485], std=[0.229]) # 根据实际统计调整均值和标准差 ]) # 创建训练和验证数据集实例 train_dataset = SARDataset(root='path_to_train_data', transform=data_transforms) val_dataset = SARDataset(root='path_to_val_data', transform=data_transforms) # 构建 DataLoader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=lambda x: tuple(zip(*x))) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=2, shuffle=False, num_workers=4, collate_fn=lambda x: tuple(zip(*x))) ``` 上述代码片段展示了如何构建适用于 SAR 图像的目标检测数据流[^2]。 --- #### 2. 模型初始化 Faster R-CNN 的核心组件包括特征提取网络(Backbone)、区域提议网络(RPN)以及 ROI Pooling 和分类/回归模块。以下是一个基于 ResNet-50 的 Faster R-CNN 初始化示例: ```python import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor def create_model(num_classes): # 加载预训练的 Faster R-CNN 模型 (ResNet-50 Backbone) model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) # 替换分类头以适配新的类别数 in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) return model num_classes = 2 # 背景 + 小目标 model = create_model(num_classes).to('cuda') ``` 此部分代码实现了对 Faster R-CNN 预训练权重的加载,并修改其预测头部以支持特定数量的类别。 --- #### 3. 锚框配置 对于 SAR 图像中小目标的检测,合理设计锚框的比例和尺度至关重要。可以通过 `AnchorGenerator` 自定义多个尺度和宽高比参数: ```python from torchvision.models.detection.anchor_utils import AnchorGenerator anchor_generator = AnchorGenerator( sizes=((32,), (64,), (128,), (256,), (512,)), # 不同尺度的锚框 aspect_ratios=((0.5, 1.0, 2.0),) # 宽高比 ) # 更新模型中的 anchor generator model.rpn.anchor_generator = anchor_generator ``` 通过调整锚框的设计,可以更好地匹配 SAR 图像中小目标的实际分布特性。 --- #### 4. 训练过程 训练过程中涉及优化器的选择、学习率调度策略以及损失函数计算等内容。下面展示了一个简单的训练循环框架: ```python optimizer = torch.optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) for epoch in range(epochs): model.train() total_loss = 0 for images, targets in train_loader: images = list(image.to('cuda') for image in images) targets = [{k: v.to('cuda') for k, v in t.items()} for t in targets] loss_dict = model(images, targets) losses = sum(loss for loss in loss_dict.values()) optimizer.zero_grad() losses.backward() optimizer.step() total_loss += losses.item() lr_scheduler.step() print(f'Epoch {epoch}, Loss: {total_loss}') ``` 这段代码描述了如何利用 SGD 优化器配合 StepLR 学习率衰减机制完成模型训练。 --- #### 5. 测试与评估 测试阶段主要关注模型推理速度及其精度表现。可使用 COCO API 或其他工具包来量化 mAP 等指标。 ```python @torch.no_grad() def evaluate(model, data_loader, device): model.eval() results = [] for images, _ in data_loader: images = [image.to(device) for image in images] outputs = model(images) results.extend(outputs) return results test_results = evaluate(model, val_loader, 'cuda') print(test_results[:5]) ``` 以上脚本可用于生成最终的检测结果并打印前几个样本作为调试参考。 --- ###
评论 92
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值