开篇:开发者永恒的痛
原本我想...(点烟沉思版)
🎣 "大家好,今天手把手教你部署Stable Diffusion——
(三天后)朋友们Midjourney更新了!
(一周后)等等!DALL·E 3 API开放了!!
(摔键盘)这赛博钓鱼佬谁爱当谁当!"
脑子进入沉思,脑海出现如下的流程图。
突然顿悟(“AI共富圈”的小伙伴的一瓶肥仔水的惊醒)我们能否让AI接管这场与编译器的肉搏战?
🔥 与其追着工具喂饭,不如偷了AI的锅灶!
今天不教你在3090上画涩图(划掉),而是教你——《用AI大模型3分钟搭建开发环境》
技术原理:大模型如何理解环境配置
当你说‘我要跑Stable Diffusion’,大模型看到的是一场依赖关系的蝴蝶效应。
回想刚才你说的“我要跑Stable Diffusion”,自己是多么的无知。你刚才讲的真的是“机语”吗?大模型必定听不懂你说的话。马上复习“AI共富圈”的提示词资料,马上做出修改:
【角色】:你是开发专家
【任务】:你现在需要部署 Stable Diffusion 全过程的步骤。
【约束】:提供的部署命令不需要进行解释说明,只需要按顺序提供。
大模型进入了以下的思考过程,并逐步提供部署 Stable Diffusito 的过程。当你才看蹦出来的第一段,一口老血吐出来。“这是什么玩意?我是一台Windows,这些命令我怎么跑”。
询问“AI共富圈”的小伙伴,他们给你发了一张图。这时你才反应过来,自己刚才愚蠢的行为。
经过重新调整并优秀提示词如下:
【角色】:你是开发专家
【任务】:你现在需要提供在Windows 11 上部署 Stable Diffusion 全过程的步骤,使用的显卡是RTX 4090,使用Python 3.10和PyTorch 2.1。
【约束】:仅提供Windows11 部署的过程,避免提供Mac或者Linux版本。提供的部署命令不需要进行解释说明,只需要按顺序提供。
这么一看,还真是这么一回事。在自己本地电脑跑完一遍命令,终于见到久违的Stable Diffusion界面。
结语:从配置地狱到创造天堂
当conda env create
不再抽签式报错,当docker build
的进度条第一次丝滑跑满——我们终于看清这场变革的本质:AI砸碎了环境的枷锁,让开发者重回创意的圣殿。十年前,我们浪费时间在依赖冲突的迷宫;五年前,Dockerfile成了新的信仰;而今天,只需把需求“喂”给大模型。
当配置时间从小时级压缩到分钟级,开发者终于能回归创造的本质——用代码改变世界。