DeepSeek技术原理解读:从算法革新到产业变革

46 篇文章 ¥19.90 ¥99.00

一、架构设计:效率与性能的平衡之道

1. 混合专家架构(MoE):分治协作的智能网络

DeepSeek的MoE架构通过动态激活专家模块实现计算资源的高效分配。以DeepSeek-V3为例,其总参数达6710亿,但每个输入仅激活370亿参数,通过路由机制选择最匹配的专家组合。这种设计具有两大优势:

  • 计算成本降低:相比传统全参数激活模型,训练成本降低16倍(如V3模型仅需558万美元,远低于同类模型)。
  • 任务适应性增强:不同专家模块专注于特定领域(如编程、数学推理),通过动态组合应对复杂多任务场景。

2. 多头潜在注意力(MLA):长文本理解的突破

传统Transformer的注意力机制在处理长文本时存在内存占用高、效率低的问题。MLA通过低秩联合压缩技术,将键值缓存(KV cache)压缩至原大小的1/4,同时引入旋转位置编码(RoPE)&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摆烂大大王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值