一、架构设计:效率与性能的平衡之道
1. 混合专家架构(MoE):分治协作的智能网络
DeepSeek的MoE架构通过动态激活专家模块实现计算资源的高效分配。以DeepSeek-V3为例,其总参数达6710亿,但每个输入仅激活370亿参数,通过路由机制选择最匹配的专家组合。这种设计具有两大优势:
- 计算成本降低:相比传统全参数激活模型,训练成本降低16倍(如V3模型仅需558万美元,远低于同类模型)。
- 任务适应性增强:不同专家模块专注于特定领域(如编程、数学推理),通过动态组合应对复杂多任务场景。
2. 多头潜在注意力(MLA):长文本理解的突破
传统Transformer的注意力机制在处理长文本时存在内存占用高、效率低的问题。MLA通过低秩联合压缩技术,将键值缓存(KV cache)压缩至原大小的1/4,同时引入旋转位置编码(RoPE)&#