(2024.9.19)在Python的虚拟环境中安装GDAL

1、序言

没有日更、月更已经快两年时间了。在此期间,我去忙碌了两个事情:1是硕士毕业论文和博士申请。2是对人性的思考和对自己性格的中正(强势到弱势,弱到害怕冲突。再到目前的“中正”状态)这一篇博文应该是此次长远计划的开篇,问题来源是博士课题组师妹的求助,如何在Pycharm创建的虚拟环境中安装GDAL?同样本篇文章纯纯手码,第一要义还是记录,方便以后查阅;其次在于分享,若是下一届师弟师妹来了,直接发网页链接即可。

2、具体步骤

安装GDAL基础环境:Pycharm(并在项目文件里创建好虚拟环境)、Python、Windows 10。

注意:我们自身电脑是有Visual Studio,如果想一次安装成功,建议安装一下VS2019或更高版本,安装时选择“使用C++的桌面开发”。同时,这对于安装深度学习使用的CUDA很有用处。

 A、确认Python版本

我的版本是3.9.7.确认方法是:

点击“开始”->找到Python文件夹,并点击IDLE,打开后即可看到Python版本号。实际上知道大致版本即可,比如我的“3.9 64位 AMD64”。

B、下载GDAL

到GDAL网址上下载对应Pytho版本的GDAL。之前是有个直接下载的网页的,目前“走丢了”。我根据自己Python版本找到了别的博主发的百度网盘库,你们可以下载(最好点到原文,给他点个赞!):

Python第三方GDAL库安装(离线库下载资源)_gdal离线安装-CSDN博客

https://pan.baidu.com/s/18loUH7TdVqS8WyFGoUt_Ow?pwd=xmph
提取码:xmph

既然是匹配Python版本,那“匹配”一词,现在的年轻人应该是都熟悉的,就是“CP”。所以我们只需要找“xxx_CP39-win_amd64.whl”的文件下载就好。 

此处附上长时间有效的百度网盘链接:

链接:https://pan.baidu.com/s/1MEUlEJX4-P9VdNlhvJzMFw 
提取码:75sx 

最后,可以从这里下载对应版本的GDAL:

Releases · cgohlke/geospatial-wheels · GitHub

C、安装GDAL

将下载的GDAL文件复制到项目对应的目录下,举个例子:

假设你的终端打开后显示的地址是:(venv) C:\Users\XXXXX\Desktop\GDAL>

那你就把GDAL文件放在该目录下,并在终端里(确定进入虚拟环境后)使用如下命令安装:

pip install GDAL-3.8.4-cp39-cp39-win_amd64.whl

当然install后面跟着的文件名称得和你下载的文件名称一致。

D、验证是否安装成功

在虚拟环境中创建一个新的Python文件,并输入下面的代码:

from __future__ import print_function
from osgeo import gdal
print("GDAL's version is:" + gdal.__version__)
print(gdal)

如果能显示出GDAL版本,来源路径,那说明就安装成功了。

numpy和GDAL有版本关联,注意自己的numpy版本!!!

3、结语 

熟悉配置环境的各位都知道,按理说我们只需要更换一个软件源下载各种软件包,何须手动下载如此麻烦?GDAL包可能就是这样,我之前给多位同学配置过GDAL的包,只听说过Conda配置时一条命令就好。若以后有更方便的方法欢迎留言交流。

### 如何在Python虚拟环境安装配置GDAL #### 使用`venv`模块创建并激活虚拟环境 为了确保不同项目的依赖项不会发生冲突,建议先创建一个新的虚拟环境。可以通过如下命令来完成: ```bash python -m venv mygdal_env ``` 这将在当前目录下创建名为`mygdal_env`的虚拟环境[^3]。 接着需要激活该虚拟环境,在 Windows 上执行以下命令: ```bash .\mygdal_env\Scripts\activate ``` 成功激活后,终端提示符前会显示`(mygdal_env)`字样,表示现在处于新建立的虚拟环境中工作。 #### 安装必要的构建工具和其他依赖包 对于某些操作系统而言,可能还需要额外安装一些编译器或其他开发工具链以便能够顺利编译 GDAL 的 C/C++ 扩展部分。具体取决于所使用的平台和个人设置情况而定。 #### 利用Conda安装GDAL 考虑到直接通过pip安装可能会遇到兼容性问题或缺少系统级依赖的情况,推荐采用 Conda 来管理软件包及其依赖关系。如果尚未安装 Anaconda 或 Miniconda,则需先行下载安装其中一个版本。 一旦有了 Conda 环境,就可以利用它来进行更简便的操作了: ```bash conda install -c conda-forge gdal ``` 这条指令指定了从 `conda-forge` 渠道获取最新稳定版的 GDAL 及其所有必需组件[^5]。 #### 验证安装结果 当上述过程顺利完成之后,便可以在 Python 中测试是否能正常导入 GDAL 模块: ```python from osgeo import gdal print(gdal.__version__) ``` 这段简单的脚本将会打印出已安装 GDAL 版本号,证明一切就绪[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liO_Oil

打赏我,开启隐藏模式。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值