【论文阅读】Decoupled Knowledge Distillation

摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而 logit 蒸馏的重要性则被大大忽视了。为了提供研究 logit 蒸馏的新观点,我们将经典的 KD 损失重新表述为两部分,即目标类知识蒸馏 (TCKD) 和非目标类知识蒸馏 (NCKD)。我们实证调查并证明了两部分的效果:TCKD 传递了有关训练样本“困难”的知识,而 NCKD 是 logit 蒸馏起作用的突出原因。更重要的是,我们揭示了经典的 KD 损失是一个耦合公式,它 (1) 抑制了 NCKD 的有效性,并且 (2) 限制了平衡这两个部分的灵活性。为了解决这些问题,我们提出了解耦知识蒸馏 (DKD),使 TCKD 和 NCKD 能够更高效、更灵活地发挥作用。与基于复杂特征的方法相比,我们的 DKD 在 CIFAR-100、ImageNet 和 MS-COCO 数据集上取得了相当甚至更好的结果,并且在图像分类和目标检测任务上具有更好的训练效率。本文证明了 logit 蒸馏的巨大潜力,希望对未来的研究有所帮助。
在这里插入图片描述

参考链接

论文
代码
Decoupled Knowledge Distillation论文阅读+代码解析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bosenya12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值