- 博客(173)
- 收藏
- 关注
原创 【论文阅读】Decoupled Knowledge Distillation
最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而 logit 蒸馏的重要性则被大大忽视了。为了提供研究 logit 蒸馏的新观点,我们将经典的 KD 损失重新表述为两部分,即。
2025-07-10 14:18:31
511
原创 【论文阅读】Defensive Few-shot Learning
本文研究了一个新的具有挑战性的问题,称为防御性 Few-shot 学习,以学习一种针对对抗性攻击的稳健 Few-shot 模型。简单地将现有的对抗性防御方法应用于小样本学习并不能有效地解决这个问题。这是因为在小样本设置中无法再满足通常假设的训练集和测试集之间的样本级分布一致性。为了解决这种情况,我们开发了一个通用的防御性小样本学习 (DFSL) 框架来回答以下两个关键问题:(1) 如何将对抗性防御知识从一个样本分布转移到另一个样本分布?(2) 在小镜头设置下如何缩小干净样本和对抗样本之间的分布差距?
2025-07-10 09:47:08
934
1
原创 【论文阅读】Semi-Supervised Domain Adaptation for Automatic Modulation Recognition in Unseen Scenarios
随着无线通信的快速发展,自动调制识别 (AMR) 在认知无线电 (CR) 的频谱管理中发挥着关键作用。然而,真实通信环境的动态属性(以信道、噪声和其他因素的变化为特征)对基于深度学习 (DL) 技术的 AMR 系统提出了艰巨的挑战。传统的基于 DL 的 AMR 方法以数据独立性和相同分布 (i.i.d.) 为前提,通常在适应这些扰动方面步履蹒跚,从而阻碍了它们的有效性。为了纠正这一困境,该文提出了一种新的半监督域自适应自动调制识别 (SSDA-AMR) 方法。
2025-07-09 18:34:01
508
1
原创 【论文阅读】Transfer Learning for Automatic Modulation Recognition Using a Few Modulated Signal Samples
这封信提出了一种用于自动调制识别 (AMR) 的迁移学习模型,该模型仅具有少量调制信号样本。传输模型以音频信号 UrbanSound8K 作为源域进行训练,然后以一些调制信号样本为目标域进行微调。为了提高分类性能,信噪比 (SNR) 被用作一个功能来促进信号的分类。仿真结果表明,迁移模型在分类精度方面具有显著优势。这篇文章的核心内容是提出了一种基于。
2025-07-09 14:25:05
575
1
原创 【论文阅读】SSCL-AMC: 一种基于动态增强和集成学习的自监督自动调制分类方法
摘要:与传统的手工自动调制分类 (AMC) 方法相比,深度学习已经显示出有希望的结果,AMC 作为信号检测和调制之间的中间步骤发挥着关键作用。然而,获取大规模标记数据仍然具有挑战性,因为数据质量和注释成本都是实现准确和高效训练的关键因素。在本文中,我们提出了一种新的自我监督对比学习 (SSCL) 和基于梯度对抗的数据增强 (GADA) 方法用于 AMC。此外,还采用了基于 Transformer-LSTM 架构的细致编码器,以使用未标记的基类特征提取器。随后,采用来微调特征提取器,并引入。
2025-07-09 11:07:21
684
1
原创 【论文阅读】面向跨信道场景:融合半监督对抗域自适应调制分类网络
摘要:使用深度学习技术的自动调制分类 (AMC) 已成为一个突出的研究领域,展示了相当大的实际应用。然而,目前在特定通道模型上训练的 AMC 深度学习网络在新通道场景中表现不佳。针对此问题,该文提出一种对抗性半监督域自适应方法。具体来说,分类准确性、聚类敏感性和分布距离一起利用三阶段迭代训练方法进行优化。因此,所提出的模型在转移到新通道时,在有限的标记数据量下实现了稳健的性能。这篇文章提出了一种用于。
2025-07-09 10:41:02
733
1
原创 【论文阅读】Adversarial Transfer Learning for Deep Learning Based Automatic Modulation Classification
自动调制分类有助于许多重要的信号处理应用。最近,深度学习模型被用于调制识别,其性能优于基于手工制作特征的传统机器学习技术。然而,由于以下原因,自动调制分类仍然具有挑战性。现有的深度学习方法仅适用于同一分布的数据。在实际场景中,数据分布随采样频率的变化而变化,从而形成了不同采样率的域。此外,很难为所有感兴趣的领域构建大规模的、注释良好的数据集。我们将数据量充足的域名定义为源域名,将数据不足的域名定义为目标域名。显然,分类模型在目标域中的性能较弱。为了应对这些挑战,我们提出了一种。
2025-07-08 14:28:28
664
1
原创 【论文阅读】基于 GAN 和深度迁移学习的频谱预测:一种跨带数据增强框架
摘要:本文研究了频谱预测中的数据稀缺问题。认知无线电设备可能会随着电磁环境的变化而频繁切换目标频率。之前训练好的预测模型在面对少量新目标频率的历史数据时,往往无法保持良好的性能。此外,认知无线电设备通常实现实时的动态频谱接入,这意味着重新收集新任务频段的数据和重新训练模型的时间非常有限。为了解决上述问题,我们利用(GAN) 和深度的最新进展,开发了一个用于频谱预测的跨频带数据增强框架。首先,通过相似性测量,我们使用与目标频段最相似的频段的历史数据预先训练一个 GAN 模型。
2025-07-08 11:09:47
819
1
原创 【论文阅读】基于多模态融合的少样本学习条件下雷达发射机脉冲内调制信号识别研究
这篇文章的核心内容是关于在少样本学习(Few-Shot Learning)条件下,基于多模态融合的雷达发射机内脉冲调制信号识别的研究。文章提出了一种新颖的方法,利用模型无关元学习(Model-Agnostic Meta-Learning, MAML)和多模态融合神经网络(DCFANet)来提高雷达信号识别的准确性和鲁棒性,特别是在低信噪比(SNR)和数据稀缺的情况下。文章的研究为雷达信号识别领域提供了新的思路和方法,特别是在少样本和复杂电磁环境下的应用。
2025-07-08 10:20:54
515
1
原创 【论文阅读】Few-Shot PPG Signal Generation via Guided Diffusion Models
从少量样本数据选择到后处理的整体框架。首先,扩散模型在N样本数据集和指导下的训练。接着,模型生成一个增强的数据集,并进一步优化以提高保真度。最后,这些合成数据与少量样本训练数据集结合,用于基准模型的训练和评估。数据分布从最初的红色变为保真度增强的蓝色,这表明模型与真实数据更加吻合,如简化后的数据分布示意图所示。
2025-07-08 00:02:51
536
1
原创 【论文阅读】Method for Recognition of Communication Interference Signals under Small-Sample Conditions
这篇文章的核心内容是提出了一种在小样本条件下识别通信干扰信号的方法,该方法基于WDCGAN-SA(Wasserstein Deep Convolution Generative Adversarial Network–Self Attention)和C-ResNet(Convolution Block Attention Module–Residual Network)。文章通过数据增强和改进的分类网络,有效提高了在复杂电磁环境下小样本通信干扰信号的识别率。
2025-07-07 14:25:30
905
1
原创 【论文阅读】Dynamic Few-Shot Visual Learning without Forgetting
系统概述如下:(a) 一个基于卷积神经网络(ConvNet)的识别模型,该模型包含特征提取器和分类器;(b) 一个少样本分类权重生成器。这两个组件都是在一组基础类别上训练的,我们为这些类别准备了大量训练数据。在测试阶段,权重生成器会接收少量新类别的训练数据以及基础类别的分类权重向量(分类器框内的绿色矩形),并为新类别生成相应的分类权重向量(分类器框内的蓝色矩形)。这样,卷积神经网络就能同时识别基础类别和新类别。
2025-07-07 11:08:36
592
1
原创 【论文阅读】SASLN:小样本条件下机械故障诊断的信号增强自学习网络
使用WGAN生成无标签信号样本。利用生成的信号样本预训练SLN,SLN由卷积编码器和卷积解码器组成。将卷积编码器的权重转移到故障分类模型中,并使用少量真实信号样本进行微调,以实现准确的故障分类。
2025-07-07 10:36:00
680
1
原创 【论文阅读】Meta-SE: A Meta-Learning Framework for Few-Shot Speech Enhancement
文章通过引入元学习技术,成功解决了少样本语音增强问题。Meta-SE框架通过在多个任务上学习元知识,能够快速适应新噪声类型,即使在样本有限的情况下也能表现出色。这一成果为语音增强领域提供了一种新的解决方案,特别是在实际应用中噪声环境复杂且样本有限的情况下。
2025-07-07 10:22:26
963
1
原创 【论文阅读】在调制分类中针对对抗性攻击的混合训练时和运行时防御
在深度学习在包括计算机视觉和自然语言处理在内的许多应用中的卓越性能的推动下,最近的几项研究侧重于应用深度神经网络来设计未来几代无线网络。然而,最近的几项工作指出,难以察觉且精心设计的对抗样本(攻击)会显着降低分类准确性。在这封信中,我们研究了一种基于训练时和运行时防御技术的防御机制,用于保护基于机器学习的无线电信号(调制)分类免受对抗性攻击。训练时防御包括对抗性训练和标签平滑,而运行时防御采用基于支持向量机的神经拒绝 (NR)。考虑到白盒场景和真实数据集,我们证明了我们提出的技术优于现有的最先进技术。
2025-05-07 10:10:16
1229
1
原创 【论文阅读】Substitute Model Generation for Black-Box Adversarial Attack Based on Knowledge Distillation
尽管深度卷积神经网络 (CNN) 在许多计算机视觉任务中表现良好,但当它受到对抗性攻击的扰动时,其分类机制非常脆弱。在本文中,我们提出了一种利用生成黑盒 CNN 模型的替代模型的新算法。所提出的算法将多个 CNN 教师模型提炼成一个紧凑的学生模型,作为其他要攻击的黑盒 CNN 模型的替代品。因此,通过使用各种白盒攻击方法,可以在此替代模型上生成黑盒对抗样本。根据我们在 ResNet18 和 DenseNet121 上的实验,我们的算法通过训练基于知识蒸馏的替代模型,将攻击成功率 (ASR) 提高了 20%
2025-05-06 15:26:19
494
1
原创 【论文阅读】APMSA: Adversarial Perturbation Against Model Stealing Attacks
训练深度学习 (DL) 模型需要专有数据和计算密集型资源。为了收回训练成本,模型提供商可以通过机器学习即服务 (MLaaS) 将 DL 模型货币化。通常,该模型部署在云中,同时为付费查询提供可公开访问的应用程序编程接口 (API) 以获得好处。然而,模型窃取攻击对这种模型货币化计划构成了安全威胁,因为它们窃取了模型,而没有为未来的大量查询付费。具体来说,攻击者通过对目标模型进行查询,获取输入输出对,从而通过对替代模型进行逆向工程来推断模型的内部工作机制,从而剥夺了模型所有者的商业优势,泄露了模型的隐私。
2025-04-30 15:02:09
1424
1
原创 【论文阅读】Examining of Shallow Autoencoder on Black-box Attack against Face Recognition
在本文中,我们提出了一种对人脸识别有效的。用于人脸识别的黑盒 A.E. 存在攻击成功概率低、攻击目标有限或计算复杂度大等多重问题,导致在许多实际场景中不切实际。因此,我们提出了一种更有效的利用黑盒 A.E. 攻击人脸识别系统的方法,基于 Huang 等人的 A.E. 生成方法,创建了一个适合人脸识别的。为了进行评估,该方法和公共数据集用于攻击在人脸识别系统中注册的任意和特定人员,指出了针对人脸识别系统进行黑盒对抗攻击的可能性。
2025-04-30 14:06:26
227
原创 【论文阅读】Partial Retraining Substitute Model for Query-Limited Black-Box Attacks
针对深度神经网络(DNN)分类器的黑盒攻击正受到越来越多的关注,因为它们在现实世界中比白盒攻击更实用。在黑盒环境中,对手对目标模型的了解有限。这使得难以估计用于制作对抗示例的梯度,从而无法将强大的白盒算法直接应用于黑盒攻击。因此,。然后,对手使用替代模型而不是未知目标模型来制作对手示例。。然而,模拟目标模型通常需要进行大量查询,因为从一开始就训练新的DNN。在这项研究中,我们提出了一种新的替代模型训练方法,以。我们认为查询数量是实施实际黑盒攻击的重要因素,因为现实世界的系统通常出于安全和财务目的限制查询。
2025-04-29 16:09:39
1145
1
原创 【论文阅读】Multi-Component Feature Extraction for Few-Sample Automatic Modulation Classification
随着深度学习 (DL) 的快速发展,自动调制分类 (AMC) 也取得了巨大的飞跃。基于 DL 的 AMC 方法能够通过训练大量标记样本来实现高精度。
2025-04-29 09:43:24
982
1
原创 【论文阅读】FE-DaST: Fast and effective data-free substitute training for black-box adversarial attacks
深度学习模型在计算机视觉(例如图像分类)中已显示出其优势,而众所周知,它们容易受到输入图像难以察觉的扰动,这称为对抗性攻击。最近提出了无数据替代训练 (DaST),这是一个基于多分支生成器的对抗框架,其中每个分支生成相应类别的图像以平衡合成图像,训练代理模型,无需任何真实图像即可进行基于传输的黑盒对抗攻击。但是,这个多分支框架过于冗余,无法快速收敛,并且仅限于少数类别的数据集。在本文中,我们提出了一种基于单分支生成器的更简单的对抗框架,以快速有效地训练替代模型,称为 FE-DaST。
2025-04-27 14:39:04
934
1
原创 【研究学习】小样本学习
Few-Shot Learning 泛指从少量标注数据中学习的方法和场景,理想情况下,一个能进行 Few-Shot Learning 的模型,也能快速地应用到新领域上。
2025-04-24 11:35:58
354
原创 【研究学习】知识蒸馏和模型蒸馏技术
Hinton在2015年提出知识蒸馏。(基础,奠定开山之作)使用教师模型的输出logits作为软标签,通过调整温度参数来让学生模型学习。论文:Distilling the Knowledge in a Neural Network结合量化与蒸馏的技术,这样可以在压缩模型大小的同时保持性能。论文:Model compression via distillation and quantization针对BERT模型的一种蒸馏方法,学生从教师多个中间层学习,不仅限于学习最后一层,属于中间层蒸馏的一种。参考
2025-02-19 15:38:55
844
原创 【环境配置】Jupyter Notebook切换虚拟环境
通过以上方法,你可以在Jupyter Notebook中灵活地切换和使用不同的虚拟环境。
2024-12-28 10:15:34
1721
2
原创 【论文阅读】小样本学习相关研究
不可靠的经验风险最小化器是FSL的核心问题。基于先验知识如何处理核心问题,可以将FSL分为三个角度:数据使用先验知识来增强监督经验,模型通过先验知识约束假设空间,算法使用先验知识改变对假设空间中最佳假设参数的搜索。这篇小样本学习综述论文从Data、Model、Algorithm三个方面介绍了现有的小样本学习领域内的方法,以数学的形式具体解释了小样本学习中的困难点。
2024-11-11 10:01:12
1147
1
原创 【论文阅读】信号调制识别的对抗样本攻防技术研究进展(2022)
模型窃取攻击也被称为探索性攻击,模型窃取攻击探索了解模型内部工作原理,攻击方通过收集训练数据摸清 DL 模型和算法的内部运作机理,并通过仿真相似的输入和输出数据来训练一个网络模型,作为替代模型[36‑37]。文献[40]指出用替代模型设计的对抗攻击具有一定的迁移性,对抗攻击会转移到目标模型。例如在无线通信场景中,可以通过探索空中频谱信息来了解通信系统的传输模式。另外,文献[23]研究了无线信道对替代模型的对抗攻击迁移性的影响。
2024-11-08 16:46:18
353
1
原创 【信号处理】绘制IQ信号时域图、星座图、功率谱
把输入的IQ信号定义为信号的实部和虚部(但实际上IQ两路信号都是实信号)将I和Q分别作为横轴和纵轴,那么在复平面上每两个IQ值可以对应一个固定的点,将坐标图画出来就叫做星座图。
2024-11-08 16:28:03
1695
原创 【信号处理】使用CNN对RF调制信号进行分类
Using CNN to classify RF modulation data.Dataset is from: DATA LINKpaper: Over the Air Deep Learning Based Radio Signal ClassificationData is processed. Column data are a two variable label composed of the Modulation and SNR, Row 0 is the binary encoded ve
2024-11-07 16:32:03
511
原创 【信号处理】基于联合图像表示的深度学习卷积神经网络
实验显示了哪种信号表示在被测试的信号中更好地分类。与眼图和AF相比,星座图获得了更好的精度。当结合信号表示,特别是星座图和眼图时,比单独使用它们获得了更好的结果。结合自动对焦和眼图,信号在-15 dB时略有改善。而使用自动对焦的星座图并没有改善结果。模糊函数描述了信号的两个维度(dimensions):延迟(delay)和多普勒(Doppler)。优化函数使用Adam Function。模型架构CNN,深度为7层。训练3个epochs。
2024-11-07 10:13:33
866
原创 【数据增强】Mixup
Mixup是发源于CV领域的一种数据增强技术,发展到现在不仅在CV领域,在NLP、时间序列预测等领域都有其踪影,是一种提分神器。存在问题:大型深度神经网络功能强大,但表现出不良行为,如对记忆和对抗性实例的敏感性。Mixup是一种简单有效的数据增强方法(学习原则),能够缓解这些问题。
2024-10-31 16:16:09
1393
原创 【LaTex】参考文献格式转换(bibtex到bibtem)
很多期刊给出的LaTeX模板中要求参考文献使用\bibitem格式,不能将参考文献放在.bib文件中,而是使用\bibitem{}命令,写在论文的.tex文件中。文献较多时手动添加显然不太实际,解决方法是通过bibtex实现批量处理。
2024-10-15 11:55:45
3055
原创 【论文阅读】基于真实数据感知的模型功能窃取攻击
模型功能窃取攻击是人工智能安全领域的核心问题之一,目的是利用有限的与目标模型有关的信息训练出性能接近的克隆模型,从而实现模型的功能窃取。针对此类问题,一类经典的工作是基于生成模型的方法,这类方法利用生成器生成的图像作为查询数据,在同一查询数据下对两个模型预测结果的一致性进行约束,从而进行模型学习。然而此类方法生成器生成的数据常常是人眼不可辨识的图像,不含有任何语义信息,导致目标模型的输出缺乏有效指导性。针对上述问题,提出一种新的模型窃取攻击方法,实现对图像分类器的有效功能窃取。
2024-10-01 22:10:53
780
2
原创 【论文阅读】一种基于元学习框架的针对智能网络入侵检测系统的快速模型窃取攻击技术
入侵检测系统越来越多地使用机器学习。虽然机器学习在识别恶意流量方面表现出了出色的性能,但它可能会增加隐私泄露的风险。本文重点关注对入侵检测系统实施模型窃取攻击。现有的模型窃取攻击很难在实际网络环境中实施,因为它们要么需要受害者数据集的私有数据,要么需要频繁访问受害者模型。在本文中,我们提出了一种称为快速模型窃取攻击(FMSA)的新颖解决方案来解决模型窃取攻击领域的问题。我们还强调了在网络安全中使用 ML-NIDS 的风险。首先,将元学习框架引入模型窃取算法中,以在黑盒状态下克隆受害者模型。
2024-10-01 22:09:44
515
1
原创 【PyTorch】生成对抗网络
Generative Adversarial Nets,简称GANGAN:生成对抗网络 —— 一种可以生成的模型。
2024-09-29 21:21:25
1141
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人