PRML第七章 稀疏核机 总结
很长一段时间没有做自我总结,也没有意识去写博客了。今天想来谈谈SVM与RVM(两种稀疏核方法)。(最近正在自学,然后遇到各种问题,也懂了一些问题,所以想要总结一下),本文主要分为三个部分对稀疏核机进行阐述,SVM,RVM以及SVM和RVM的区别。
1、内容简介
首先是SVM,其核心在于实现最大分类间隔,常用于二分类。它是一种稀疏核机方法,但是不能预测概率,那么什么是稀疏核机呢,稀疏顾名思义就是少的意思,核代表的是核函数,机在机器学习当中表示一种算法,总的来说就是用少量的样本,借助于核函数实现的一种机器学习算法,那么为什么要用核函数呢?原因在于,核函数可以实现线性不可分的情况,将低维空间转化为高维空间,从而将线性不可分问题转化为线性可分问题来实现。
在介绍SVM与RVM的原理之前,首先介绍一下两者简单的原理上的区别:
(1)SVM基于结构风险最小化原则构建的学习机,不提供后验概率。可以看作是基于距离的硬分类。(频率学派)
(2)RVM:基于贝叶斯框架构建学习机,利用自动相关理论( ARD )来移除不相关的点,提供后验概率,能产生比SVM更稀疏的解。基于概率的软分类。(贝叶斯学派)
好了,了解了稀疏核机的含义以及SVM与RVM简单的却别以后,下面来介绍SVM。
2、SVM相关知识理论
(1)SVM的运用环境
-
解决小样本问题
-
非线性以及高维模式识别问题
-
应用到函数拟合等问题中
-
文本分类,人脸识别等
(2)SVM的实现原理
PRML这本书上主要介绍了基于SVM的二分类(线性分类与非线性分类),多分类的情况,下面将逐步介绍:
在介绍之前,我们首先要明白SVM的目标主要是:利用最大化分类边缘(margin)的原理来实现的。那么什么是分类边缘呢?分类边缘(margin):决策边界与任意样本之间的最小距离。
图中,很清楚的可以看到margin,也就是分类边缘,我们要做的就是在保证误差最小化的情况下,最大化分类边缘。红色的线就是我们要找的决策线(面)。
a.二分类的情形
模型:
输入: