PRML第七章稀疏核机 (RVM)

本文介绍了SVM与RVM这两种稀疏核机方法,重点讨论了它们的区别。SVM基于结构风险最小化,适用于二分类,而RVM基于贝叶斯框架,提供后验概率,产生更稀疏的解。SVM解决线性不可分问题,通过核函数映射至高维。RVM则更稀疏,不需要交叉验证,测试时间短,泛化能力不逊于SVM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >




PRML第七章 稀疏核机 总结


很长一段时间没有做自我总结,也没有意识去写博客了。今天想来谈谈SVMRVM(两种稀疏核方法)。(最近正在自学,然后遇到各种问题,也懂了一些问题,所以想要总结一下),本文主要分为三个部分对稀疏核机进行阐述,SVMRVM以及SVMRVM的区别。


1、内容简介


首先是SVM,其核心在于实现最大分类间隔,常用于二分类。它是一种稀疏核机方法,但是不能预测概率,那么什么是稀疏核机呢,稀疏顾名思义就是少的意思,核代表的是核函数,机在机器学习当中表示一种算法,总的来说就是用少量的样本,借助于核函数实现的一种机器学习算法,那么为什么要用核函数呢?原因在于,核函数可以实现线性不可分的情况,将低维空间转化为高维空间,从而将线性不可分问题转化为线性可分问题来实现。


在介绍SVMRVM的原理之前,首先介绍一下两者简单的原理上的区别:


1SVM基于结构风险最小化原则构建的学习机,不提供后验概率。可以看作是基于距离的分类。(频率学派)


2RVM:基于贝叶斯框架构建学习机,利用自动相关理论( ARD )来移除不相关的点,提供后验概率,能产生比SVM更稀疏的解。基于概率的分类。(贝叶斯学派)


好了,了解了稀疏核机的含义以及SVMRVM简单的却别以后,下面来介绍SVM


2SVM相关知识理论


1SVM的运用环境


  • 解决小样本问题

  • 非线性以及高维模式识别问题

  • 应用到函数拟合等问题中

  • 文本分类,人脸识别等


2SVM的实现原理
      PRML
这本书上主要介绍了基于SVM的二分类(线性分类与非线性分类),多分类的情况,下面将逐步介绍:


在介绍之前,我们首先要明白SVM的目标主要是:利用最大化分类边缘(margin)的原理来实现的。那么什么是分类边缘呢?分类边缘(margin:决策边界与任意样本之间的最小距离。


图中,很清楚的可以看到margin,也就是分类边缘,我们要做的就是在保证误差最小化的情况下,最大化分类边缘。红色的线就是我们要找的决策线(面)。



a.二分类的情形


模型:

输入:

相关向量的MATLAB代码,经过验证是正确的,很实用 推荐相关向量(Relevance vector machine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量(Support vector machine,简称SVM)一样的函数形式,与SVM一样基于核函数映射将低维空间非线性问题转化为高维空间的线性问题。 RVM原理步骤 RVM通过最大化后验概率(MAP)求解相关向量的权重。对于给定的训练样本集{tn,xn},类似于SVM , RVM 的模型输出定义为 y(x;w)=∑Ni=1wiK(X,Xi)+w0 其 中wi为权重, K(X,Xi)为核函。因此对于, tn=y(xn,w)+εn,假设噪声εn 服从均值为0 , 方差为σ2 的高斯分布,则p ( tn | ω,σ2 ) = N ( y ( xi ,ωi ) ,σ2 ) ,设tn 独立同分布,则整个训练样本的似然函数可以表示出来。对w 与σ2的求解如果直接使用最大似然法,结果通常使w 中的元素大部分都不是0,从而导致过学习。在RVM 中我们想要避免这个现像,因此我们为w 加上先决条件:它们的率分布是落在0 周围的正态分布: p(wi|αi) = N(wi|0, α?1i ),于是对w的求解转化为对α的求解,当α趋于无穷大的时候,w趋于0. RVM的步骤可以归结为下面几步: 1. 选择适当的核函数,将特征向量映射到高维空间。虽然理论上讲RVM可以使用任意的核函数,但是在很多应用问题中,大部分人还是选择了常用的几种核函 数,RBF核函数,Laplace核函数,多项式核函数等。尤其以高斯核函数应用最为广泛。可能于高斯和核函数的非线性有关。选择高斯核函数最重要的是带 宽参数的选择,带宽过小,则导致过学习,带宽过大,又导致过平滑,都会引起分类或回归能力的下降 2. 初始化α,σ2。在RVM中α,σ2是通过迭代求解的,所以需要初始化。初始化对结果影响不大。 3. 迭代求解最优的权重分布。 4. 预测新数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值