Project01_演化博弈文章复现_基金“老鼠仓“监管演化博弈模型分析

文献引用如下:

[1]伍佳妮,糜仲春,梁樑.基金“老鼠仓”监管双方演化博弈分析[J].大连理工大学学报(社会科学版),2013,34(01):67-72.

摘要:老鼠仓行为严重影响了证券市场的秩序和公平性,损害了证券投资者的利益。文章通过构建基金经理和监管机构双方的行为博弈模型,运用演化博弈理论进行分析,得出不同情形下双方的行为博弈过程。结果表明,"老鼠仓"行为的监管与发生主要由市场监管因素、群众因素和违规代价因素三方面决定,进而对监管机构关于"老鼠仓"行为的监督和管理提出合理性建议。

1.演化博弈模型分析

参与方​​:

​​监管机构​​(策略:主动监管A/被动监管P);
​​基金经理​​(策略:违规V/不违规N)。

收益函数:

监管机构:

主动监管时:

hAV=αR−C1h^{AV}= \alpha R- C_1hAV=αRC1 (违规)
hAN=−C1h^{AN}=- C_1hAN=C1(不违规)

被动监管时:

hPV=βγ(R−C2)+β(1−γ)(−C2)h^{PV}= \beta \gamma ( R- C_{2}) + \beta ( 1- \gamma ) ( - C_{2})hPV=βγ(RC2)+β(1γ)(C2) (违规)
hPN=β(−C2)h^{PN}= \beta ( - C_{2})hPN=β(C2) (不违规)

基金经理:

违规时:

fVA=α(−F)+(1−α)(Y+M)−C3f^{VA}= \alpha ( - F) + ( 1- \alpha ) ( Y+ M) - C_3fVA=α(F)+(1α)(Y+M)C3( 主 动 监 管 ) fVP=β[γ(−F)+(1−γ)(Y+M)]−C3f^{VP}= \beta [ \gamma ( - F) + ( 1- \gamma ) ( Y+ M) ] - C_3fVP=β[γ(F)+(1γ)(Y+M)]C3( 被 动 监 管 )

不违规时:

fNA=Y−C3f^{NA}= Y- C_3fNA=YC3 (主动监管)fNP=βY+(1−β)Y) f^{NP}= \beta Y+ ( 1- \beta ) Y)fNP=βY+(1β)Y (被动监管)

2.演化动态分析

复制动态方程:

监管机构与基金经理的策略演化遵循复制动态方程:

μ˙=μ(1−μ)[λ(hAV−hPV)+(1−λ)(hAN−hPN)]λ˙=λ(1−λ)[μ(fVA−fNA)+(1−μ)(fVP−fNP)]\dot{\mu}=\mu(1-\mu)[\lambda(h^{AV}-h^{PV})+(1-\lambda)(h^{AN}-h^{PN})]\\\dot{\lambda}=\lambda(1-\lambda)[\mu(f^{VA}-f^{NA})+(1-\mu)(f^{VP}-f^{NP})]μ˙=μ(1μ)[λ(hAVhPV)+(1λ)(hANhPN)]λ˙=λ(1λ)[μ(fVAfNA)+(1μ)(fVPfNP)]

平衡点与稳定性:

通过雅可比矩阵分析,得到5个平衡点:

R1=(0,0)R_1= ( 0, 0)R1=(0,0), R2=(0,1)R_2= ( 0, 1)R2=(0,1), R3=(1,0)R_3= ( 1, 0)R3=(1,0), R4=(1,1)R_4= ( 1, 1)R4=(1,1)

R5=(fNP−fNPfVA−fVP−fNA+fNP,hPN−hANhAV−hAN−hPV+hPN)R_{5}=(\frac{f^{NP}-f^{NP}}{f^{VA}-f^{VP}-f^{NA}+f^{NP}},\frac{h^{PN}-h^{AN}}{h^{AV}-h^{AN}-h^{PV}+h^{PN}})R5=(fVAfVPfNA+fNPfNPfNP,hAVhANhPV+hPNhPNhAN)

3.研究结论

​​监管因素​​:主动监管成功率(α)和被动监管成功率(γ)显著影响博弈结果。
​​群众因素​​:举报概率(β)通过提高被动监管效率抑制违规行为。
​​违规代价​​:罚款(F)和声誉损失直接影响基金经理决策。

​​4.情景分析​​

情形I(α>βγ,βγ(F+Y+M)>M):(\alpha>\beta\gamma,\beta\gamma(F+Y+M)>M):(α>βγ,βγ(F+Y+M)>M):
均衡点为 (0,0),即监管机构被动监管,基金经理不违规 (理想状态)。
情形II(α>βγ,α(F+Y+M)<M):(\alpha>\beta\gamma,\alpha(F+Y+M)<M):(α>βγ,α(F+Y+M)<M):
均衡点为(1,1) ,监管机构主动监管,基金经理仍违规 (需加强惩罚)。
情形III (α>βγ,βγ(F+Y+M)<M<α(F+Y+M)):(\alpha>\beta\gamma,\beta\gamma(F+Y+M)<M<\alpha(F+Y+M)):(α>βγ,βγ(F+Y+M)<M<α(F+Y+M)): 系统在(0,1)和(1,0)间振荡,需动态调整监管策略。

5.代码复现

由于场景太多,就测试原文的情形1吧!以下是参数设置


clear; clc; close all;
%% 参数设置
params.alpha = 0.5; % 监管机构主动监管成功率
params.gamma = 1 - params.alpha; % 监管机构被动监管成功率
params.beta = 0.5; % 举报概率

params.mu0 = 0.5; % 初始主动监管概率
params.lambda0 = 0.5; % 初始违规概率

params.R = 100; % 查处成功收益
params.C1 = 50 * params.alpha; % 主动监管成本
params.C2 = 50 - params.C1; % 被动监管成本

params.Y = 30; % 正常交易收益
params.M = 20; % 违规超额收益
params.F = 50; % 违规损失
params.C3 = 5; % 配合调查成本


6.结果呈现

原文结果

情形 I : α−βγ>0,βγ(F+Y+M)>M\alpha-\beta\gamma>0,\beta\gamma(F+Y+M)>Mαβγ>0,βγ(F+Y+M)>M
(0,0)是 ESS,(1,1)是不稳定平衡点,(0,1)和(1,0)
为鞍点,原文对应的动力系统演化动态相图如图5 所示。
在这里插入图片描述
根据上述两个条件易得出,α(F+Y+M)>M,_\alpha(F+Y+M)>M,α(F+Y+M)>M,即不论监管机构采取何种监管方式,基金经理采取违规措施的损失期望恒为正数。显然在这种情形下,基金经理最优选择是不违规,那么监管机构出于效用最大原则,根据条件 α−βγ>0\alpha-\beta\gamma>0αβγ>0,采取被动监管策略效用更合适。因此,(0,0)为演化稳定点,这种情形自然是市场最理想情况。

复现结果

在这里插入图片描述
在这里插入图片描述

结尾

文章还涉及6种情形,由于时间有限,不一一展现,感兴趣的小伙伴自行分析和进行参数测试吧,代码基本上是可以完全复现出来的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值