文献引用如下:
[1]伍佳妮,糜仲春,梁樑.基金“老鼠仓”监管双方演化博弈分析[J].大连理工大学学报(社会科学版),2013,34(01):67-72.
摘要:老鼠仓行为严重影响了证券市场的秩序和公平性,损害了证券投资者的利益。文章通过构建基金经理和监管机构双方的行为博弈模型,运用演化博弈理论进行分析,得出不同情形下双方的行为博弈过程。结果表明,"老鼠仓"行为的监管与发生主要由市场监管因素、群众因素和违规代价因素三方面决定,进而对监管机构关于"老鼠仓"行为的监督和管理提出合理性建议。
1.演化博弈模型分析
参与方:
监管机构(策略:主动监管A/被动监管P);
基金经理(策略:违规V/不违规N)。
收益函数:
监管机构:
主动监管时:
hAV=αR−C1h^{AV}= \alpha R- C_1hAV=αR−C1 (违规)
hAN=−C1h^{AN}=- C_1hAN=−C1(不违规)
被动监管时:
hPV=βγ(R−C2)+β(1−γ)(−C2)h^{PV}= \beta \gamma ( R- C_{2}) + \beta ( 1- \gamma ) ( - C_{2})hPV=βγ(R−C2)+β(1−γ)(−C2) (违规)
hPN=β(−C2)h^{PN}= \beta ( - C_{2})hPN=β(−C2) (不违规)
基金经理:
违规时:
fVA=α(−F)+(1−α)(Y+M)−C3f^{VA}= \alpha ( - F) + ( 1- \alpha ) ( Y+ M) - C_3fVA=α(−F)+(1−α)(Y+M)−C3( 主 动 监 管 ) fVP=β[γ(−F)+(1−γ)(Y+M)]−C3f^{VP}= \beta [ \gamma ( - F) + ( 1- \gamma ) ( Y+ M) ] - C_3fVP=β[γ(−F)+(1−γ)(Y+M)]−C3( 被 动 监 管 )
不违规时:
fNA=Y−C3f^{NA}= Y- C_3fNA=Y−C3 (主动监管)fNP=βY+(1−β)Y) f^{NP}= \beta Y+ ( 1- \beta ) Y)fNP=βY+(1−β)Y (被动监管)
2.演化动态分析
复制动态方程:
监管机构与基金经理的策略演化遵循复制动态方程:
μ˙=μ(1−μ)[λ(hAV−hPV)+(1−λ)(hAN−hPN)]λ˙=λ(1−λ)[μ(fVA−fNA)+(1−μ)(fVP−fNP)]\dot{\mu}=\mu(1-\mu)[\lambda(h^{AV}-h^{PV})+(1-\lambda)(h^{AN}-h^{PN})]\\\dot{\lambda}=\lambda(1-\lambda)[\mu(f^{VA}-f^{NA})+(1-\mu)(f^{VP}-f^{NP})]μ˙=μ(1−μ)[λ(hAV−hPV)+(1−λ)(hAN−hPN)]λ˙=λ(1−λ)[μ(fVA−fNA)+(1−μ)(fVP−fNP)]
平衡点与稳定性:
通过雅可比矩阵分析,得到5个平衡点:
R1=(0,0)R_1= ( 0, 0)R1=(0,0), R2=(0,1)R_2= ( 0, 1)R2=(0,1), R3=(1,0)R_3= ( 1, 0)R3=(1,0), R4=(1,1)R_4= ( 1, 1)R4=(1,1)
R5=(fNP−fNPfVA−fVP−fNA+fNP,hPN−hANhAV−hAN−hPV+hPN)R_{5}=(\frac{f^{NP}-f^{NP}}{f^{VA}-f^{VP}-f^{NA}+f^{NP}},\frac{h^{PN}-h^{AN}}{h^{AV}-h^{AN}-h^{PV}+h^{PN}})R5=(fVA−fVP−fNA+fNPfNP−fNP,hAV−hAN−hPV+hPNhPN−hAN)
3.研究结论
监管因素:主动监管成功率(α)和被动监管成功率(γ)显著影响博弈结果。
群众因素:举报概率(β)通过提高被动监管效率抑制违规行为。
违规代价:罚款(F)和声誉损失直接影响基金经理决策。
4.情景分析
情形I(α>βγ,βγ(F+Y+M)>M):(\alpha>\beta\gamma,\beta\gamma(F+Y+M)>M):(α>βγ,βγ(F+Y+M)>M):
均衡点为 (0,0),即监管机构被动监管,基金经理不违规 (理想状态)。
情形II(α>βγ,α(F+Y+M)<M):(\alpha>\beta\gamma,\alpha(F+Y+M)<M):(α>βγ,α(F+Y+M)<M):
均衡点为(1,1) ,监管机构主动监管,基金经理仍违规 (需加强惩罚)。
情形III (α>βγ,βγ(F+Y+M)<M<α(F+Y+M)):(\alpha>\beta\gamma,\beta\gamma(F+Y+M)<M<\alpha(F+Y+M)):(α>βγ,βγ(F+Y+M)<M<α(F+Y+M)): 系统在(0,1)和(1,0)间振荡,需动态调整监管策略。
5.代码复现
由于场景太多,就测试原文的情形1吧!以下是参数设置
clear; clc; close all;
%% 参数设置
params.alpha = 0.5; % 监管机构主动监管成功率
params.gamma = 1 - params.alpha; % 监管机构被动监管成功率
params.beta = 0.5; % 举报概率
params.mu0 = 0.5; % 初始主动监管概率
params.lambda0 = 0.5; % 初始违规概率
params.R = 100; % 查处成功收益
params.C1 = 50 * params.alpha; % 主动监管成本
params.C2 = 50 - params.C1; % 被动监管成本
params.Y = 30; % 正常交易收益
params.M = 20; % 违规超额收益
params.F = 50; % 违规损失
params.C3 = 5; % 配合调查成本
6.结果呈现
原文结果
情形 I : α−βγ>0,βγ(F+Y+M)>M\alpha-\beta\gamma>0,\beta\gamma(F+Y+M)>Mα−βγ>0,βγ(F+Y+M)>M
(0,0)是 ESS,(1,1)是不稳定平衡点,(0,1)和(1,0)
为鞍点,原文对应的动力系统演化动态相图如图5 所示。
根据上述两个条件易得出,α(F+Y+M)>M,_\alpha(F+Y+M)>M,α(F+Y+M)>M,即不论监管机构采取何种监管方式,基金经理采取违规措施的损失期望恒为正数。显然在这种情形下,基金经理最优选择是不违规,那么监管机构出于效用最大原则,根据条件 α−βγ>0\alpha-\beta\gamma>0α−βγ>0,采取被动监管策略效用更合适。因此,(0,0)为演化稳定点,这种情形自然是市场最理想情况。
复现结果