基于属性图的原生图计算和学习 - Neo4j GDS介绍

本文介绍了Neo4j的Graph Data Science (GDS) 1.4版本,该版本引入了图嵌入和图学习功能。GDS支持Node2Vec、FastRP和GraphSAGE等图嵌入算法,提供机器学习模型目录用于存储和应用预测模型。此外,GDS还包括丰富的图算法集合,旨在推动图数据库从图查询向图学习的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(本文部分内容来自Neo4j.com: https://neo4j.com/blog/announcing-graph-native-machine-learning-in-neo4j/ )

作为全球领先的图数据库平台软件开发者,Neo4j率先发布全球第一个“原生图机器学习库” GDS :Graph Data Science 版本1.4。在这一版本中,除了增加更多图算法外,还第一次引入并实现了面向“图学习”(Graph Machine Learning)的企业级“图嵌入”(Graph Embedding)和图表示的机器学习模型算法过程。下面我们来逐一看一下GDS中到底有哪些“干货”吧。

1、原生(Native)属性图(Label PropertyGraph)

现实世界可以用属性图(Property Graph),即包含节点属性的图结构来描述和存储。例如,在一个社交网络中,人、地方、活动等可以用节点来表示,人群之间的关系诸如亲属、朋友、同事等则可以用关系来表示;代表“人”的节点的属性则可以是姓名、出生年月、性别等,代表“朋友”的关系的属性则可以有“成为朋友的日期”等。

从上面的简单例子可以看出,以属性图表示复杂的网络其最大的优点是自然、简洁、易于理解;而基于原生(Native)图数据库存储和处理网络则能为图的遍历提供最佳的查询性能。在原生的图数据库中,数据以图的方式存储、查询、展现。下图对不同的存储模式做了比较。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值