自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 【文献整理】近期文献整理

从训练集中的T2WI、T1WI、DKI、表观扩散系数(ADC)图和DCE动力学参数图中提取放射组学特征。使用支持向量机(SVM)分类器建立基于每个序列或序列组合的模型,并用于区分验证集中的乳腺良性和恶性病变。采用Spearman秩相关系数和最小绝对收缩和选择算子算法(LASSO)进行最优特征选择。受试者工作特征(ROC)曲线用于评估验证集中放射组学模型的诊断性能。3区-Medical Engineering and Physics。

2025-04-07 11:47:56 602

原创 【文献阅读】Artificial Intelligence Based Diagnosis for CervicalLymph Node Malignancy Using the Point-Wis

摘要:本文旨在建立一种人工智能(AI)架构,用于从增强超声(CEUS)视频中自动提取数据学习的图像特征,并评估用于颈部良恶性淋巴结分类的人工智能架构。利用点门控玻尔兹曼机(PGBM)构建了CEUS特征提取和分类的人工智能架构。PGBM由与任务相关和与任务无关的隐藏单元组成,分别用于特征学习和特征选择,并将与任务相关的单元连接到支持向量机(SVM),产生分类的可能性。采用合成少数过采样技术提高了不平衡数据集的分类能力。对88例患者的127个淋巴结(39个良性和88个恶性)的数据库进行了5倍交叉验证的实验评估。

2025-03-11 15:10:18 827

原创 【文献阅读】Benign and Malignant Breast Tumor Classification inUltrasound and Mammography Images via Fusi

摘要:乳腺癌是一种全世界范围的疾病,影响着不同国家的女性。引起乳腺癌的真正原因较为复杂,由于乳腺癌的高风险,早期发现该疾病对于降低死亡率是必要的。早期的治疗可以提高妇女的预期寿命和生活质量。CAD(计算机辅助诊断)系统可以利用基于图像处理的技术和工具对乳腺癌的良恶性病变进行诊断,在辅助医生进行诊断时,以更少的流程获得更精确的诊断。本研究提出了一种新的乳腺癌自动诊断的CAD系统。所提出的方法包括不同的阶段。在预处理阶段,对图像进行分割,获得病灶的掩模;在下一阶段,通过深度学习神经网络DenseNet 201进

2025-03-11 11:16:50 998

原创 【文献阅读】Research on Point-wise Gated Deep Networks

根据PCD,FPCD将连接可见单元和隐藏单元的权值划分为规则权值和快速权值,其中,使用正则权值来计算与数据相关的统计量,并利用正则权值加上快速权值之和来计算与模型相关的统计量[20]。假设不相关的模式数据导致不好的中间表达和影响DBN和DBM的性能,本文将pgRBM引入DBN和DBM和提出点控深度信念网络(pgDBN)和点门控深玻尔兹曼机器(pgDBM)。受限玻尔兹曼机(RBM)是一个生成的随机网络,它包含一层可见的单元v = {vi} D i=1和一层隐藏的带有参数的单元h = {hi} J i=1。

2025-01-26 20:38:12 842

原创 【文献阅读】Implicit Mixtures of Restricted Boltzmann Machines

摘要:我们提出了一个混合模型,其组件是限制玻尔兹曼机(rbm)。这种可能性以前没有被考虑过,因为计算RBM的配分函数是棘手的,这似乎也使学习RBM的混合模型难以处理。令人惊讶的是,当表述为三阶玻尔兹曼机器时,这种混合模型可以使用对比散度简单地学习。该模型的能量函数捕获了可见单元、隐藏单元和表示集群标签的单个表示集群标签的隐藏离散变量之间的三方相互作用。该模型的显著特点是,与其他混合模型不同,混合比例没有明确地参数化。相反,它们是通过能量函数隐式定义的,并依赖于模型中的所有参数。我们给出了MNIST和NORB

2025-01-18 15:24:23 824

原创 【文献阅读】Predicting breast cancer types on and beyond molecular levelin a multi-modal fashion

题目:以多模式的方式预测分子水平上的乳腺癌类型摘要准确确定乳腺癌的分子亚型对乳腺癌患者的预后具有重要意义,并可指导治疗方法的选择。在本研究中,我们开发了一个基于深度学习的模型,直接从诊断性乳房x线摄影和超声图像中预测乳腺癌的分子亚型。提出了多模态深度学习和内模态间注意模块(MDL-IIA)来提取乳房x线摄影和超声之间的重要关系。与其他队列模型相比,MDL-IIA在预测4类分子亚型方面具有最佳的诊断性能,马修斯相关系数(MCC)为0.837(95%置信区间[CI]: 0.803,0.870)。MD

2025-01-15 17:08:00 539

原创 【文献阅读】Learning and Selecting Features Jointlywith Point-wise Gated Boltzmann Machines

题目:点向门控玻尔兹曼机学习和选择特征摘要:无监督特征学习已经成为一种很有前途的学习未标记数据表示的工具。然而,当数据包含大量不相关的模式时,学习有用的高级特性仍然具有挑战性。虽然特征选择可以用于这样复杂的数据,但当我们必须从头开始构建一个学习系统(即,从缺乏有用的原始特征开始)时,它可能会失败。为了解决这个问题,我们提出了一个点向门控玻尔兹曼机器(point-wise gated Boltzmann machine),一个结合了特征学习和特征选择的统一生成模型。我们的模型不仅对学习到的高级特征(即

2024-11-07 22:08:55 861

原创 【文献阅读】Multi-region radiomics for artificially intelligent diagnosis of breast cancer using multimod

题目:基于多模态超声的人工智能诊断乳腺癌的多区域放射组学研究摘要:目的:乳腺癌的超声(US)诊断通常是基于单一的超声方式对整个乳腺肿瘤的单一区域,这限制了诊断性能。在乳腺肿瘤的多模态超声图像上的多个区域都可能对诊断有有用的信息。本研究旨在提出一种多模态放射组学多模式方法,用于人工智能诊断恶性和良性乳腺肿瘤。材料和方法:首先,从超声和增强超声图像中5个ROI中提取影像组学特征,包括强度统计、灰度共现矩阵纹理特征和二值纹理特征。多个ROI包括整个肿瘤区域、最强灌注区、边缘区及周围区域。其次,采用

2024-11-05 15:49:13 1171

原创 【文献阅读】Multimodal feature learning and fusion on B-mode ultrasonography and sonoelastography using...

题目:基于点门控深度网络的b型超声和超声弹性成像的多模态特征学习与融合诊断摘要:b型超声和超声弹性成像可用于前列腺癌(PCa)的临床诊断。两种超声(US)模式的结合使用计算机辅助可能有助于提高诊断性能。提出了一种基于多模态超声的计算机辅助诊断(CAD)技术。首先,从b型US图像和超声弹性图中提取定量特征,包括强度统计、区域百分位特征、灰度共现矩阵(GLCM)纹理特征和二值纹理特征。其次,提出了一种名为PGBM-RBM2的深度网络来学习和融合多模态特征,该网络由点向门控玻尔兹曼机(PGBM)和两层限制

2024-11-05 13:57:32 1133

原创 【文献阅读】Deep learning based classification of breast tumors with shear-waveelastography

本研究旨在建立一个深度学习(DL)架构,用于从剪切波弹性成像(SWE)中自动提取从数据中学习到的图像特征,并评估DL架构在区分良恶性乳腺肿瘤中的作用。我们构建了一个用于SWE特征提取的两层DL体系结构,由点向门控玻尔兹曼机(PGBM)和限制性玻尔兹曼机(RBM)组成。PGBM包含与任务相关和与任务无关的隐藏单元,而与任务相关的单元与RBM相连。对来自121例患者的227张SWE图像、135张良性肿瘤和92张恶性肿瘤进行了5倍交叉验证。用我们的DL架构学习到的特征与量化图像强度和纹理的统计特征进行了比较。

2024-09-13 15:56:40 2188

原创 【影像组学pyradiomics学习笔记】png图像提取组学特征

【代码】【影像组学pyradiomics学习笔记】png图像提取组学特征。

2024-09-11 21:54:27 652

原创 【影像组学pyradiomics学习笔记】pyradiomics 使用案例

配置文件位置:pyradiomics-master\examples\exampleSettings\yaml。result = extractor.execute(ori_path, lab_path) # 抽取特征。for key, value in result.items(): # 输出特征。图像及掩膜位置:pyradiomics-master\data。# 使用配置文件初始化特征抽取器。使用官方案例进行测试。

2024-09-10 16:46:27 1195

原创 【影像组学pyradiomics学习笔记】pyradiomics安装无Microsoft Visual C++ 14.0 或更高版本问题

在安装pyradiomics库是遇见问题:且由于公共网络限制,只能选择离线安装Microsoft Visual C++,推荐按照以下方法采用离线安装方式,亲测有效:安装包共1.08G。

2024-09-10 13:41:56 252

原创 离线安装Microsoft Visual C++ 14.0

【完美解决·离线安装】Pip安装时遇到Microsoft Visual C++ 14.0 is required错误,下载离线安装包安装即可(2023年11月8日更新资源)_microsoft visual c++ 14.0离线安装-CSDN博客

2024-09-09 18:09:42 2394

原创 【影像组学pyradiomics学习笔记】pyradiomics安装及介绍

pyradiomics是一个开源的python包,用于医学图像的影像组学。

2024-09-09 16:40:56 406

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除