基于MNE的EEGNet 神经网络的脑电信号分类实战(附完整源码)

利用MNE中的EEG数据,进行EEGNet神经网络的脑电信号分类实现:

代码:

代码主要包括一下几个步骤:
1)从MNE中加载脑电信号,并进行相应的预处理操作,得到训练集、验证集以及测试集,每个集中都包括数据和标签;
2)基于tensorflow构建EEGNet网络模型;
3)编译模型,配置损失函数、优化器和评估指标等,并进行模型训练和预测;
4)绘制训练集和验证集的损失曲线以及训练集和验证集的准确度曲线。
代码如下:

import mne
import os
from pathlib import Path
import numpy as np
from keras.src.utils import np_utils

from mne import io
from mne.datasets import sample
import matplotlib.pyplot as plt
import pathlib

from keras.models import Model
from keras.layers import Dense, Activation, Permute, Dropout
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from keras.layers import SeparableConv2D, DepthwiseConv2D
from keras.layers import BatchNormalization
from keras.layers import SpatialDropout2D
from keras.regularizers import l1_l2
from keras.layers import Input, Flatten
from keras.constraints import max_norm
from keras import backend as K
from keras.src.callbacks import ModelCheckpoint

from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression


def EEGNet(nb_classes, Chans=64, Samples=128,
           dropoutRate=0.5, kernelLength=64,
           F1=8, D=2, F2=16, norm_rate=0.25,
           dropout_type='Dropout'):
    """
    EEGNet模型的实现。

    参数:
    - nb_classes: int, 输出类别的数量。
    - Chans: int, 通道数,默认为64。
    - Samples: int, 每个通道的样本数,默认为128。
    - dropoutRate: float, Dropout率,默认为0.5。
    - kernelLength: int, 卷积核的长度,默认为64。
    - F1: int, 第一个卷积层的滤波器数量,默认为8。
    - D: int, 深度乘法器,默认为2。
    - F2: int, 第二个卷积层的滤波器数量,默认为16。
    - norm_rate: float, 权重范数约束,默认为0.25。
    - dropout_type: str, Dropout类型,默认为'Dropout'。

    返回:
    - Model: Keras模型对象。
    """

    # 根据dropout_type参数确定使用哪种Dropout方式
    if dropout_type == 'SpatialDropout2D':
        dropoutType = SpatialDropout2D
    elif dropout_type == 'Dropout':
        dropoutType = Dropout
    else:
        raise ValueError('dropout_type must be one of SpatialDropout2D '
                         'or Dropout, passed as a string.')

    # 定义模型的输入层
    input1 = Input(shape=(Chans, Samples, 1))

    # 第一个卷积块
    block1 = Conv2D(F1, (1, kernelLength), padding='same',
                       input_shape=
### 如何在 IntelliJ IDEA 中配置和使用 Swagger #### 添加 Maven 依赖 为了使 Swagger 能够工作,在 `pom.xml` 文件中需加入特定的依赖项。这可以通过编辑项目的构建文件来完成: ```xml <dependencies> <!-- swagger2 --> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger2</artifactId> <version>2.8.0</version> </dependency> <!-- swagger ui --> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger-ui</artifactId> <version>2.8.0</version> </dependency> </dependencies> ``` 这些依赖会引入必要的库用于生成 API 文档以及提供交互式的 UI 页面[^4]。 #### 创建 Swagger 配置类 接着创建一个新的 Java 类用来初始化并配置 Swagger 实例。通常命名为类似于 `SwaggerConfig.java` 的名称,并放置于合适的位置,比如 `config` 包内: ```java import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import springfox.documentation.builders.ApiInfoBuilder; import springfox.documentation.service.ApiInfo; import springfox.documentation.spi.DocumentationType; import springfox.documentation.spring.web.plugins.Docket; @Configuration public class SwaggerConfig { @Bean public Docket api() { return new Docket(DocumentationType.SWAGGER_2) .apiInfo(apiInfo()) .select() .build(); } private ApiInfo apiInfo(){ return new ApiInfoBuilder().title("API文档").description("").termsOfServiceUrl("") .contact(new Contact("", "", "")) .license("").licenseUrl("").version("1.0") .build(); } } ``` 这段代码定义了一个 Spring Bean 来设置 Swagger 的基本信息和其他选项。 #### 启动应用测试 当上述步骤完成后,启动应用程序即可访问默认路径 `/swagger-ui.html` 查看自动生成的 RESTful 接口文档界面。通过浏览器打开该链接可以浏览到所有已暴露出来的 HTTP 请求方法及其参数说明等信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值