利用MNE中的EEG数据,进行EEGNet神经网络的脑电信号分类实现:
代码:
代码主要包括一下几个步骤:
1)从MNE中加载脑电信号,并进行相应的预处理操作,得到训练集、验证集以及测试集,每个集中都包括数据和标签;
2)基于tensorflow构建EEGNet网络模型;
3)编译模型,配置损失函数、优化器和评估指标等,并进行模型训练和预测;
4)绘制训练集和验证集的损失曲线以及训练集和验证集的准确度曲线。
代码如下:
import mne
import os
from pathlib import Path
import numpy as np
from keras.src.utils import np_utils
from mne import io
from mne.datasets import sample
import matplotlib.pyplot as plt
import pathlib
from keras.models import Model
from keras.layers import Dense, Activation, Permute, Dropout
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from keras.layers import SeparableConv2D, DepthwiseConv2D
from keras.layers import BatchNormalization
from keras.layers import SpatialDropout2D
from keras.regularizers import l1_l2
from keras.layers import Input, Flatten
from keras.constraints import max_norm
from keras import backend as K
from keras.src.callbacks import ModelCheckpoint
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
def EEGNet(nb_classes, Chans=64, Samples=128,
dropoutRate=0.5, kernelLength=64,
F1=8, D=2, F2=16, norm_rate=0.25,
dropout_type='Dropout'):
"""
EEGNet模型的实现。
参数:
- nb_classes: int, 输出类别的数量。
- Chans: int, 通道数,默认为64。
- Samples: int, 每个通道的样本数,默认为128。
- dropoutRate: float, Dropout率,默认为0.5。
- kernelLength: int, 卷积核的长度,默认为64。
- F1: int, 第一个卷积层的滤波器数量,默认为8。
- D: int, 深度乘法器,默认为2。
- F2: int, 第二个卷积层的滤波器数量,默认为16。
- norm_rate: float, 权重范数约束,默认为0.25。
- dropout_type: str, Dropout类型,默认为'Dropout'。
返回:
- Model: Keras模型对象。
"""
# 根据dropout_type参数确定使用哪种Dropout方式
if dropout_type == 'SpatialDropout2D':
dropoutType = SpatialDropout2D
elif dropout_type == 'Dropout':
dropoutType = Dropout
else:
raise ValueError('dropout_type must be one of SpatialDropout2D '
'or Dropout, passed as a string.')
# 定义模型的输入层
input1 = Input(shape=(Chans, Samples, 1))
# 第一个卷积块
block1 = Conv2D(F1, (1, kernelLength), padding='same',
input_shape=