Yolov12的训练、检测和模型计算量代码

训练代码如下:

from ultralytics import YOLO

model = YOLO(r"yolov12.yaml")

# Train the model
results = model.train(
  data=r"/yolov12-main/data1/cls.yaml", # 自己数据集的类别
  epochs=100,
  batch=16,
  imgsz=640,
  scale=0.5,  # S:0.9; M:0.9; L:0.9; X:0.9
  mosaic=1.0,
  mixup=0.0,  # S:0.05; M:0.15; L:0.15; X:0.2
  copy_paste=0.1,  # S:0.15; M:0.4; L:0.5; X:0.6
  device="0",
  workers=8,
)

detect检测代码如下:

# -*- coding: utf-8 -*-

from ultralytics import YOLO

if __name__ == '__main__':

    # Load a model
    model = YOLO(model=r"/yolov12-main/runs/detect/train/weights/best.pt")  # 训练好的权重
    model.predict(source=r'/yolov12-main/detect1/images/',                     # 检测的图片路径
                  save=True,
                  workers=8,  # 数据加载工作线程数
                  device=2,   # 显卡编号 
                  #imgsz=416,  # (int) size of input images as integer or w,h
                  #conf=0.25,  # object confidence threshold for detection (default 0.25 predict, 0.001 val)
                  #iou=0.6,  # # intersection over union (IoU) threshold for NMS
                  show=False,  # show results if possible
            
                  project='runs/detect',  # (str, optional) project name
                  name='predict',  # (str, optional) experiment name, results saved to 'project/name' directory
                  save_txt=True,  # save results as .txt file
                  save_conf=True,  # save results with confidence scores
                  save_crop=False,  # save cropped images with results
                  show_labels=True,  # show object labels in plots
                  show_conf=True,  # show object confidence scores in plots
                  vid_stride=1,  # video frame-rate stride
                  line_width=3,  # bounding box thickness (pixels)
                  visualize=False,  # visualize model features
                  augment=False,  # apply image augmentation to prediction sources
                  agnostic_nms=False,  # class-agnostic NMS
                  retina_masks=False,  # use high-resolution segmentation masks
                  boxes=True,  # Show boxes in segmentation predictions                  
                  )

模型计算量代码如下:

from ultralytics import YOLO

if __name__ == '__main__':
    # Load a model
    model = YOLO(r"/yolov12-main/ultralytics/cfg/models/v12/yolov12.yaml")  # 这里放你的模型文件地址
    model.info()
    model = YOLO(r"/yolov12-main/ultralytics/cfg/models/11/yolo11.yaml")  # 这里放你的模型文件地址
    model.info()
    model = YOLO(r"/yolov12-main/ultralytics/cfg/models/v10/yolov10n.yaml")  # 这里放你的模型文件地址
    model.info()
    model = YOLO(r"/yolov12-main/ultralytics/cfg/models/v8/yolov8.yaml")  # 这里放你的模型文件地址
    model.info()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值