【Sklearn】基于最中心分类器算法的数据分类预测(Excel可直接替换数据)

本文介绍了最近中心分类器的工作原理,它通过计算样本与类别中心的距离进行分类。在Scikit-Learn中,该模型适用于简单的分类任务,并提供了调整距离度量的参数。文章还包含了模型的实现代码、数据下载链接和运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Sklearn】基于最中心分类器算法的数据分类预测(Excel可直接替换数据)

1.模型原理

最近中心分类器(Nearest Centroid Classifier)也被称为近似最近邻分类器(Nearest Shrunken Centroid Classifier)。它是一种基于类别中心的分类方法,适用于线性可分问题。其基本思想是将每个类别的样本特征取平均,得到每个类别的中心点,然后将待分类样本与这些中心点进行距离比较,将其分配给距离最近的类别。

以下是最近中心分类器的模型原理及数学公式:

模型原理:

  1. 对于每个类别,计算其样本特征的平均值,得到类别的中心点。
  2. 对于一个待分类的样本,计算其与每个类别中心点的距离,然后将其分配给距离最近的类别。

数学模型:

  1. 对于类别 c c
以下是利用决策树算法对机场气象数据进行分析和分类,以实现对能见度的有效预测的代码: ```python import pandas as pd import os from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.metrics import classification_report from sklearn.preprocessing import StandardScaler from sklearn import tree import matplotlib.pyplot as plt # 读取文件,替换为你的Excel文件路径 excel_file = pd.ExcelFile(r'C:\Users\a1589\Desktop\大作业题目和数据/总表.xlsx') # 获取指定工作表中的数据 df = excel_file.parse('Sheet1') # 定义函数,将RVR DATA的值按照给定规则进行分类 def classify_rvr(rvr_value): if rvr_value > 1000: return '好' elif 200 <= rvr_value <= 1000: return '一般' else: return '较差' # 对RVR DATA进行分类 df['RVR_CLASS'] = df['RVR DATA'].apply(classify_rvr) # 提取特征变量和目标变量 X = df[['WS2A (MPS)', 'PAINS (HPA)', 'TEMP (掳C)', 'RH (%)', 'LIGHTS']] y = df['RVR_CLASS'] # 使用StandardScaler对X进行标准化 scaler = StandardScaler() X_scaled = pd.DataFrame(scaler.fit_transform(X), columns=X.columns) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42) # 创建决策树分类器并训练模型 dtc = DecisionTreeClassifier(random_state=42) # 定义参数范围 param_grid = { 'max_depth': [3, 5, 7, 9], 'min_samples_split': [2, 4, 6, 8], 'min_samples_leaf': [1, 2, 3, 4] } # 创建GridSearchCV对象,设置cv=5进行5折交叉验证以找到佳超参数 grid_search = GridSearchCV(estimator=dtc, param_grid=param_grid, cv=5) # 在训练集上进行模型训练和超参数搜索 grid_search.fit(X_train, y_train) # 输出佳模型及其对应的超参数 best_classifier = grid_search.best_estimator_ print("佳超参数模型超参数:", grid_search.best_params_) # 在测试集上进行预测 y_pred = best_classifier.predict(X_test) # 输出分类报告 report = classification_report(y_test, y_pred) print("分类报告:", report) # 定义DataFrame存储分类预测结果,新建y_pred列表示预测值 predicted_data = X_test[['WS2A (MPS)', 'PAINS (HPA)', 'TEMP (掳C)', 'RH (%)', 'LIGHTS']] predicted_data['y_pred'] = y_pred # 创建存储模型文件的目标路径 target_directory = '/mnt/classification_result' # 如果目标文件夹不存在,创建它 if not os.path.exists(target_directory): os.makedirs(target_directory) # 将classification_result DataFrame保存为新文件 new_file_path = '/mnt/classification_result/new_file.xlsx' predicted_data.to_excel(new_file_path, index=False) # 设置图片清晰度 plt.rcParams['figure.dpi'] = 300 # 设置中文字体 plt.rcParams['font.sans-serif'] = ['WenQuanYi Zen Hei'] # 设置负号正确显示 plt.rcParams['axes.unicode_minus'] = False # 绘制决策树 plt.figure(figsize=(10, 6)) tree.plot_tree(best_classifier, filled=True, feature_names=['WS2A', 'PAINS', 'TEMP', 'RH', 'LIGHTS'], rounded=True, class_names=['好', '一般', '较差']) # 添加轴标签和图标题 plt.xlabel('决策树图') # 显示网格线 plt.grid(True) plt.show() ``` ### 代码说明: 1. **数据读取**:从Excel文件中读取气象数据。 2. **数据预处理**:定义一个函数 `classify_rvr` 将RVR DATA的值分类为“好”、“一般”和“较差”,并将分类结果添加到数据框中。 3. **特征提取**:提取特征变量和目标变量。 4. **数据标准化**:使用 `StandardScaler` 对特征变量进行标准化。 5. **数据分割**:将数据划分为训练集和测试集。 6. **模型训练**:使用 `DecisionTreeClassifier` 创建决策树分类器,并通过 `GridSearchCV` 进行超参数搜索。 7. **模型评估**:在测试集上进行预测,并输出分类报告。 8. **结果保存**:将分类预测结果保存为新的Excel文件。 9. **决策树可视化**:绘制决策树并显示。 希望这段代码对你有所帮助!如果有任何问题或需要进一步的帮助,请随时告诉我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码两年半的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值