以下是利用决策树算法对机场气象数据进行分析和分类,以实现对能见度的有效预测的代码:
```python
import pandas as pd
import os
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler
from sklearn import tree
import matplotlib.pyplot as plt
# 读取文件,替换为你的Excel文件路径
excel_file = pd.ExcelFile(r'C:\Users\a1589\Desktop\大作业题目和数据/总表.xlsx')
# 获取指定工作表中的数据
df = excel_file.parse('Sheet1')
# 定义函数,将RVR DATA的值按照给定规则进行分类
def classify_rvr(rvr_value):
if rvr_value > 1000:
return '好'
elif 200 <= rvr_value <= 1000:
return '一般'
else:
return '较差'
# 对RVR DATA进行分类
df['RVR_CLASS'] = df['RVR DATA'].apply(classify_rvr)
# 提取特征变量和目标变量
X = df[['WS2A (MPS)', 'PAINS (HPA)', 'TEMP (掳C)', 'RH (%)', 'LIGHTS']]
y = df['RVR_CLASS']
# 使用StandardScaler对X进行标准化
scaler = StandardScaler()
X_scaled = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
# 创建决策树分类器并训练模型
dtc = DecisionTreeClassifier(random_state=42)
# 定义参数范围
param_grid = {
'max_depth': [3, 5, 7, 9],
'min_samples_split': [2, 4, 6, 8],
'min_samples_leaf': [1, 2, 3, 4]
}
# 创建GridSearchCV对象,设置cv=5进行5折交叉验证以找到最佳超参数
grid_search = GridSearchCV(estimator=dtc, param_grid=param_grid, cv=5)
# 在训练集上进行模型训练和超参数搜索
grid_search.fit(X_train, y_train)
# 输出最佳模型及其对应的超参数
best_classifier = grid_search.best_estimator_
print("最佳超参数模型超参数:", grid_search.best_params_)
# 在测试集上进行预测
y_pred = best_classifier.predict(X_test)
# 输出分类报告
report = classification_report(y_test, y_pred)
print("分类报告:", report)
# 定义DataFrame存储分类预测结果,新建y_pred列表示预测值
predicted_data = X_test[['WS2A (MPS)', 'PAINS (HPA)', 'TEMP (掳C)', 'RH (%)', 'LIGHTS']]
predicted_data['y_pred'] = y_pred
# 创建存储模型文件的目标路径
target_directory = '/mnt/classification_result'
# 如果目标文件夹不存在,创建它
if not os.path.exists(target_directory):
os.makedirs(target_directory)
# 将classification_result DataFrame保存为新文件
new_file_path = '/mnt/classification_result/new_file.xlsx'
predicted_data.to_excel(new_file_path, index=False)
# 设置图片清晰度
plt.rcParams['figure.dpi'] = 300
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['WenQuanYi Zen Hei']
# 设置负号正确显示
plt.rcParams['axes.unicode_minus'] = False
# 绘制决策树
plt.figure(figsize=(10, 6))
tree.plot_tree(best_classifier, filled=True, feature_names=['WS2A', 'PAINS', 'TEMP', 'RH', 'LIGHTS'], rounded=True, class_names=['好', '一般', '较差'])
# 添加轴标签和图标题
plt.xlabel('决策树图')
# 显示网格线
plt.grid(True)
plt.show()
```
### 代码说明:
1. **数据读取**:从Excel文件中读取气象数据。
2. **数据预处理**:定义一个函数 `classify_rvr` 将RVR DATA的值分类为“好”、“一般”和“较差”,并将分类结果添加到数据框中。
3. **特征提取**:提取特征变量和目标变量。
4. **数据标准化**:使用 `StandardScaler` 对特征变量进行标准化。
5. **数据分割**:将数据划分为训练集和测试集。
6. **模型训练**:使用 `DecisionTreeClassifier` 创建决策树分类器,并通过 `GridSearchCV` 进行超参数搜索。
7. **模型评估**:在测试集上进行预测,并输出分类报告。
8. **结果保存**:将分类预测结果保存为新的Excel文件。
9. **决策树可视化**:绘制决策树并显示。
希望这段代码对你有所帮助!如果有任何问题或需要进一步的帮助,请随时告诉我。