代谢组数据分析(十五):基于python语言构建PLS-DA分类预测模型

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

介绍

本教程描述了一个具有二元分类结果的研究的典型代谢组学数据分析工作流程。主要步骤包括:

  1. 从Excel表格导入代谢物和实验数据。
  2. 基于汇总QC的数据清洗。
  3. 利用主成分分析可视化来检查数据质量。
  4. 两类单变量统计。
  5. 使用偏最小二乘判别分析(PLS-DA)进行多变量分析,包括:
    • 模型优化(R2 vs Q2)。
    • 置换测试,模型预测指标。
    • 特征重要性。
    • 模型预测数据可视化。
  6. 将统计表格导出到Excel表格。

本教程中使用的研究已由Chan等人(2016年)作为开放获取文章发表在《英国癌症杂志》上,并且已将解析和注释的数据文件存储在代谢组学工作台数据存储库(项目ID PR000699)。

导入包/模块

本教程的第一个代码单元格(在这段文本框下方)将包和模块导入到Jupyter环境中。包和模块提供了额外的函数和工具,这些工具扩展了Python语言的基本功能。我们将需要以下工具来分析本教程中的数据:

  • nu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值