Longest Consecutive Sequence

本文介绍了一种解决LeetCode上最长连续序列问题的有效方法,通过使用unordered_map实现O(n)的时间复杂度,并详细解释了如何避免重复计算及选择合适的数据结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

其实网上关于leetcode的题目的答案已经相当多了,这也是为啥我自己不把每道题目都贴出来的原因,觉得分析得没人好,代码也没别人的精简。不过,这道题目看到网上有不少做法跟实际要求的O(n)复杂度不太符合,所以特别粘贴出来,也正好记录下自己的一些想法。

 

说实话,在第二遍做这道题目的时候,我还是没能够把最为完善的解法想出来,能够想到的是利用hash表以序列值为key,1(只是简单做个标记)为val,把序列保存起来,利用hash表O(1)的插入,查询复杂度来满足题目复杂度要求。这道题目的解法其实不难,就是遍历num中的每个元素,然后分别以num[i] - 1和num[i] + 1的顺序扫描,看是否能构成连续的序列。这道题目有两个地方需要注意,看到别人使用set,map来做,虽然原理是对的,但是由于从容器实现角度来看,它们都是基于红黑树来实现的,其插入,查找复杂度为O(log n),故其实并不满足题目要求。此外,还有一点也很重要,就是每次扫描到连续序列的时候,必须把对应的元素从hash表中删除,这样才能够保证每个元素只被扫描一次,否则复杂度也并非O(n)(假如不删除表中元素提交的话,会time limit exceed)。注意到以上两点后,相信写代码实现就不难了。此外,我自己还犯过一个错,就是遍历元素的时候,一开始直接对hash表进行遍历,结果删除元素的时候会对迭代器产生影响而导致程序崩溃,后来改成对num的元素进行遍历就可以了,其实本来就该这么做,一时间没想通。。。好了,能AC的代码如下,可能写的比较丑陋,望轻拍~

class Solution {
public:
    int longestConsecutive(vector<int> &num) {
        if (num.size() <= 1)
            return num.size();
            
        unordered_map<int, int> table;
        for (int i = 0; i < num.size(); i++)
            table.insert(make_pair(num[i], 1));
            
        int maxLen = 0;
        int len;

        for (int i = 0; i < num.size(); i++)
        {
            len = 1;
            if (table[num[i]] == 1)
            {
                for (int j = num[i] - 1; ; j--)
                {
                    if (table.find(j) != table.end())
                    {
                        len++;
                        table.erase(j);
                    }
                    else
                        break;
                }
                for (int j = num[i] + 1; ; j++)
                {
                    if (table.find(j) != table.end())
                    {
                        len++;
                        table.erase(j);
                    }
                    else
                        break;
                }
                if (len > maxLen)
                    maxLen = len;
                
            }
        }
        
        return maxLen;
    }
};


 

<think>好的,我现在需要帮助用户理解他们提供的C++代码段。首先,我会仔细阅读代码,看看它做了什么。 代码中有两个部分:首先声明了一个`unordered_set<int> num_set;`,然后遍历`nums`中的每个元素,将它们插入到`num_set`中。作者是力扣官方题解,可能这段代码是用于解决最长连续序列问题的。 用户可能想知道这段代码的作用以及它在特定问题中的用途。需要解释`unordered_set`的特点,比如快速查找、去重等。然后循环部分,将`nums`中的每个元素插入到集合中,这样可以去重,并为后续的查找操作做准备。 接下来要考虑用户可能的背景。可能是刚开始学习C++或者算法,对STL容器不熟悉。需要用简单易懂的语言解释,避免使用过多术语,但又要准确。比如,解释`unordered_set`是基于哈希表实现的,插入和查找的平均时间复杂度是O(1),这样在处理大量数据时效率高。 然后,这段代码可能出现在最长连续序列的问题中,比如LeetCode 128题。那个问题需要找到一个未排序数组中数字连续的最长序列的长度。通常的解法是先利用集合去重,然后遍历每个数字,检查是否是序列的起点,再逐次查找下一个数字是否存在。因此,这个`num_set`的创建是为了后续的查找操作,提高效率。 用户可能没有说明具体的应用场景,但根据代码来源,可以推测是用于这个问题。需要指出这段代码的作用是预处理数据,去重并存储在哈希集合中,以便快速查询。 另外,需要注意代码中的细节,比如循环中使用`const int& num`来避免不必要的拷贝,提高效率。虽然对于基本类型int来说,用不用引用区别不大,但这也是一种良好的编程习惯。 最后,要确保解释清晰,结构合理,先介绍代码的结构,再解释每个部分的作用,最后联系到实际问题中的应用,帮助用户全面理解。</think>这段代码的作用是**将数组 `nums` 中的所有元素存入一个哈希集合(`unordered_set`)中,实现去重和快速查找**。以下是逐行解析: --- ### 代码解析 ```cpp unordered_set<int> num_set; // 1. 声明一个无序集合(基于哈希表实现) for (const int& num : nums) { // 2. 遍历数组 nums 中的每个元素 num num_set.insert(num); // 3. 将 num 插入集合(自动去重) } ``` --- ### 关键点说明 1. **`unordered_set` 的特性**: - **去重**:若 `nums` 中有重复元素,集合中只会保留一个。 - **快速查找**:基于哈希表实现,插入和查找的平均时间复杂度为 $O(1)$。 - **无序存储**:元素不按顺序存储(与 `set` 不同)。 2. **循环的作用**: - 将数组 `nums` 的每个元素存入集合,为后续操作(如“检查某个值是否存在”)做准备。 --- ### 典型应用场景(如 LeetCode 128. 最长连续序列) 在这类问题中,这段代码常用于: 1. **去重**:避免重复元素干扰连续序列的计算。 2. **快速查询**:后续通过 `num_set.count(num+1)` 等操作,快速判断某个值是否存在,从而统计连续序列长度。 --- ### 代码对比:为什么用 `unordered_set` 而不是其他容器? | 容器 | 特点 | |------------------|---------------------------------------------------------------------| | `vector` | 不去重,查找效率低($O(n)$) | | `set` | 自动排序,但插入和查找效率为 $O(\log n)$ | | `unordered_set` | 无序,但插入和查找效率最高($O(1)$),**最适合当前需求** | --- ### 示例说明 假设输入 `nums = [3, 1, 2, 2, 4]`,执行代码后: - `num_set` 中的内容为 `{1, 2, 3, 4}`(去重且无序存储)。 - 后续可通过 `num_set.find(3)` 快速判断数字 `3` 是否存在。 --- ### 总结 这段代码是**预处理数据的常见操作**,核心目的是通过哈希集合实现: 1. 去重 2. 为后续高频查找提供 $O(1)$ 时间复杂度的支持
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值