《数值分析》-- 高斯求积公式

本文深入探讨了高斯型求积公式,包括高斯-勒让德和高斯-切比雪夫公式,阐述了它们的理论基础和特性。在节点个数固定的情况下,讨论了能否通过选择节点位置提高求积公式的精度。同时,介绍了利用正交多项式构造求积公式的方法,并给出了不同节点数量下的示例和求积公式,如两个点的高斯-勒让德公式。文章还回顾了复合梯形公式和Simpson公式等经典积分方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


概述

  • 问题
    那么,在节点个数一定的情况下,是否可以在[a,b]上自由选择节点的位置,使求积公式的精度提得更高?
    在这里插入图片描述
  • 例题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

一、高斯型求积公式的一般理论

  • 一般理论
    在这里插入图片描述

1.1 高斯型求积公式和高斯点

在这里插入图片描述
习题

1.2 高斯点的特征

在这里插入图片描述

  • 利用正交多项式构造高斯求积公式
    在这里插入图片描述
    习题

二、常用的高斯求积公式⭐

2.1 高斯-勒让德求积公式( Gauss-Legendre )

  1. Legendre 多项式族:
    在这里插入图片描述
    低阶Legendre多项式
    在这里插入图片描述
  2. 高斯-勒让德求积公式(G-L求积公式)⭐
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  1. 一般有界区间[a, b]上的高斯-勒让德求积公式
    (G-L求积公式)
    目的转换区间到 [-1,1] :
    在这里插入图片描述
    习题

2.2 高斯-切比雪夫求积公式( Gauss-Chebyshe)

切比雪夫多项式
在这里插入图片描述
在这里插入图片描述

  • 截断误差
    在这里插入图片描述

总结

  • 例题
  1. 在这里插入图片描述
    待定系数法构造高斯求积公式:
    在这里插入图片描述
  • 问题
    为什么2点Gauss公式有应该有三次代数精度

一般n+1个节点的求积公式的代数精度最高为2n+1次

在这里插入图片描述
在这里插入图片描述

  1. 在这里插入图片描述
    在这里插入图片描述
  • 详细过程
    在这里插入图片描述
  1. 在这里插入图片描述
    在这里插入图片描述
  • 详细过程
    在这里插入图片描述
    在这里插入图片描述
  • 例题
  1. 在这里插入图片描述
    利用正交多项式构造高斯求积公式:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 例题
  1. 在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 公式回忆
  1. 复合梯形公式
    在这里插入图片描述
    三个点: T 2 T2 T2
    五个点: T 4 T4 T4
  2. Simpson公式
    在这里插入图片描述
  3. 三个点的高斯-勒让德求积公式
    在这里插入图片描述
  • 例题
  1. 在这里插入图片描述
    在这里插入图片描述
  • 公式
    在这里插入图片描述
  1. 在这里插入图片描述
    在这里插入图片描述
  • 两点高斯-勒让德求积公式
    在这里插入图片描述

  • 例题
  1. 在这里插入图片描述
### 回答1: 以下是使用Matlab实现Gauss-Legendre求积公式的示例代码: % 定义被积函数 f = @(x) exp(-x.^2); % 定义积分区间 a = -1; b = 1; % 定义积分节点数 n = 5; % 计算Gauss-Legendre求积公式的节点和权重 [x,w] = gausslegendre(n,a,b); % 计算积分值 I = sum(w.*f(x)); % 输出结果 disp(['Gauss-Legendre求积公式的积分值为:', num2str(I)]); 其中,gausslegendre函数是一个自定义函数,用于计算Gauss-Legendre求积公式的节点和权重。具体实现可以参考以下代码: function [x,w] = gausslegendre(n,a,b) % 计算Gauss-Legendre求积公式的节点和权重 % 输入参数: % n:积分节点数 % a:积分区间左端点 % b:积分区间右端点 % 输出参数: % x:积分节点 % w:积分权重 % 计算Jacobi矩阵的三个系数 alpha = zeros(n,1); beta = zeros(n,1); gamma = zeros(n,1); for k = 1:n alpha(k) = ; beta(k) = sqrt((2*k-1)/(2*k)); gamma(k) = ; end % 计算Jacobi矩阵 J = zeros(n); for i = 1:n for j = 1:n if i == j J(i,j) = alpha(i); elseif i == j+1 J(i,j) = beta(j+1); elseif i+1 == j J(i,j) = beta(i+1); end end end % 计算Jacobi矩阵的特征值和特征向量 [V,D] = eig(J); % 提取特征值和特征向量 lambda = diag(D); phi = V(:,1); % 计算积分节点和权重 x = zeros(n,1); w = zeros(n,1); for k = 1:n x(k) = (a+b)/2 + (b-a)/2*phi(k); w(k) = (b-a)/2*lambda(k)*phi(k)^2; end end 希望对您有帮助! ### 回答2: Gauss-Legendre求积公式是数值积分中的一种方法,用于计算某个函数在某个区间内的积分近似值。该公式的优点在于精度高且稳定性好,因此通常被广泛应用于科学计算和工程实践中。 MATLAB是一种编程语言和交互式环境,可用于科学计算和工程设计。在MATLAB中,可以使用内置的函数和工具箱来计算Gauss-Legendre求积公式。 具体来说,要实现Gauss-Legendre求积公式的计算,在MATLAB中需要做以下几个步骤: 1. 定义被积函数。在MATLAB中可以使用函数句柄来定义被积函数,例如: f = @(x) sin(x); 2. 选择积分区间。在MATLAB中可以使用内置的函数quad来计算Gauss-Legendre求积公式,该函数要求指定积分区间的下限和上限,例如: a = 0; b = pi/4; 3. 指定积分精度。在MATLAB中,可以使用quad函数的第三个参数来指定积分精度,例如: tol = 1e-6; 4. 调用quad函数计算积分值。在MATLAB中,可以使用quad函数来计算Gauss-Legendre求积公式的积分近似值,例如: [Q,err] = quad(f,a,b,tol); 其中,Q为积分近似值,err为误差估计值。 总体来说,实现Gauss-Legendre求积公式的计算在MATLAB中相对简单,只需要定义被积函数、选择积分区间、指定积分精度以及调用quad函数进行计算即可。但需要注意的是,在实际应用中需要根据具体问题来选取合适的积分区间和精度,以保证计算结果的准确性和稳定性。 ### 回答3: 高斯-求积公式是一种数值积分方法,可以用来近似计算定积分,对于一些无法解析求解的函数,数值积分方法是一个很好的选择。在计算机科学和工程中,MATLAB是一种非常常用的计算机软件,在MATLAB中也提供了高斯-求积公式的函数来实现数值积分计算。 在MATLAB中,高斯-求积公式的函数是GaussLegendre,其语法为: [x,w]=GaussLegendre(n,a,b) 其中,n表示选取的Gauss-Legendre节点数,a和b表示积分上下限,x和w分别表示对应节点和权重。例如,计算$f(x)=x^2$在[0,1]上的定积分,可以使用以下MATLAB代码: f = @(x) x.^2; %函数表达式 n = 5; %选取节点数 a = 0; %积分下限 b = 1; %积分上限 [x,w] = GaussLegendre(n,a,b); %计算节点和权重 integral_value = sum(w.*f(x))*(b-a)/2 %计算数值积分结果 其中,f表示积分函数表达式,sum(w.*f(x))表示对节点和权重的乘积取和,乘以(b-a)/2即可得到定积分的近似值。 需要注意的是,高斯-求积公式只适用于区间对称函数的数值积分计算。如果需要积分非对称函数,可以采用变换将其变为对称函数后再进行积分计算。此外,选取的节点数越多,计算结果越精确,但计算时间也随之增加。因此,在使用高斯-求积公式进行数值积分计算时,需要综合考虑精度和计算效率。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胜天半月子

打不打商的无所谓,能帮到你就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值