Matplotlib | 绘制图像的几种方法总结

  • 需求
    在日常的学习中,有了数据的产生,总要想办法将数据更好的呈现出来,但是绘制图像的方法和种类各式各样,这里把常见的几种方法进行总结

方法一

# 创建一个新的图表窗口
plt.figure(figsize=(16, 12))

# 3.联合分析:购买频率与历史购买总数的箱线图
ax = sns.boxplot(data=data, x='Frequency of Purchases', y='Previous Purchases', order = data['Frequency of Purchases'].value_counts().index)
ax.set_title('Previous Purchases by Purchase Frequency')
ax.set_ylabel('Previous Purchases')
ax.set_xlabel('Frequency of Purchases')
ax.set_xticklabels(ax.get_xticklabels(), rotation=0)

# 显示图表
plt.show()

在这里插入图片描述

# 创建堆叠条形图
# kind='bar' 指定了条形图,
# stacked=True 指定了堆叠模式,
# figsize=(16, 12) 设置了图表的大小,
# colormap='viridis' 设置了颜色映射,
# legend=False 禁用了图例。
ax = item_counts.plot(kind='bar', stacked=True, figsize=(16, 12), colormap='viridis', legend=False)

# 设置图表标题和坐标轴标签
ax.set_title('Sales Quantity of Different Items in Each Category', fontsize=16)
ax.set_xlabel('Category', fontsize=12)
ax.set_ylabel('Quantity Sold', fontsize=12)

# 优化坐标轴刻度显示  禁用了 y 轴的科学计数法,使得数字以标准形式显示。
ax.yaxis.get_major_formatter().set_scientific
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胜天半月子

打不打商的无所谓,能帮到你就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值