动态规划思想:从理论到实践的探索

动态规划(Dynamic Programming,DP)是一种解决复杂问题的算法思想,核心是通过分解问题、存储中间结果来避免重复计算。它的核心目标是优化递归或分治过程中出现的重叠子问题,通过空间换时间的方式大幅提升效率。
核心思想
分解子问题 将大问题拆解为相互关联的小问题,找到问题的递归结构。例如:
斐波那契数列:f(n) = f(n-1) + f(n-2)
编辑距离:将字符串转换拆解为字符级别的插入、删除、替换操作。DNA序列编辑距离
重叠子问题 子问题之间重复出现,若直接递归会重复计算多次。例如斐波那契数列中,计算 f(5) 需要多次计算 f(3) 和 f(2)。
最优子结构 大问题的最优解可以由子问题的最优解组合得到。例如,最短路径问题中,从 A 到 C 的最短路径必然经过中间点 B 的最短路径。
记忆化存储(Memoization) 将子问题的解存储起来(通常用数组或哈希表),避免重复计算。

一般步骤

  1. 定义状态:确定问题的状态表示,通常使用一个或多个变量来表示子问题。
  2. 确定状态转移方程:根据问题的最优子结构性质,找出状态之间的转移关系。
  3. 初始化边界条件:确定初始状态的值,这些值是不需要通过状态转移方程计算的。
  4. 计算最终结果:根据状态转移方程和边界条件,逐步计算出最终问题的解。

斐波那契数列

其数值为:0、1、1、2、3、5、8、13、21、34……在数学上,这一数列以如下递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)

def fibonacci(n):
    # 创建一个列表来存储斐波那契数
    dp = [0] * (n + 1)

    # 初始化前两个斐波那契数
    dp[0], dp[1] = 0, 1

    # 从第三个数字开始计算到第 n 个数字
    for i in range(2, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2]

    # 返回第 n 个斐波那契数
    retu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胜天半月子

打不打商的无所谓,能帮到你就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值