二叉搜索树

本文介绍了二叉搜索树的定义和特性,包括中序遍历产生有序序列。详细阐述了如何在二叉搜索树中增加、查找和删除节点的操作,并分析了不同情况下操作的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 什么是二叉搜索树?

二叉搜索树是一棵特殊的二叉树, 又称为二叉排序树, 其特性为:

  1. 空树也是二叉搜索树
  2. 若它的左子树不为空, 则左子树上所有节点值均小于根节点的值
  3. 若它的右子树不为空, 则右子树上所有节点值均大于根节点的值
  4. 二叉搜索树的左右子树也都是二叉搜索树
    在这里插入图片描述
    二叉搜索树通过中序遍历可以得到一个有序的序列
    例如上图中, 中序遍历的结果为: 2 3 3 7 8 9 10 12 16 18

二. 关于二叉搜索树的操作

1. 增加一个节点

根据二叉搜索树的性质, 增加节点的思路如下:

  1. 假设在这棵二叉搜索树中, 不存在两个值相同的节点
  2. 要想插入一个节点, 就需要和二叉搜索树中的其他节点值进行比较, 从而找到其应该插入的地方
  3. 如果这个值 < 当前节点值, 就和当前节点的左子树进行比较
  4. 如果这个值 > 当前节点值, 就和当前节点的右子树进行比较
  5. 每次进行比较时, 都记录下父节点的位置
public class BSTree {
    public static class Node {
        public int val;
        public Node left;
        public Node right;

        public Node(int val) {
            this.val = val;
        }
    }

    public Node root;
    public boolean insertNode(int val) {
        Node node = new Node(val);
        // 如果二叉搜索树为空, 就将新插入的节点作为根节点并返回
        if(root == null) {
            root = node;
            return true;
        }
        Node cur = root;
        Node parent = null; // 表示 cur 节点的父节点
        while (cur != null) {
            if(cur.val == val) {
                return false; // 二叉搜索树中不存在值相同的节点
            }
            if(cur.val > val) {
                parent = cur;
                cur = cur.left;
            } else {
                parent = cur;
                cur = cur.right;
            }
        }
        if(parent.val > val) {
            parent.left = node;
        } else {
            parent.right = node;
        }
        return true;
    }
}

2. 查找一个节点值

根据二叉搜索树的性质:
如果当前节点值 < 待查找值, 去该节点右子树继续查找
如果当前节点值 > 待查找值, 去该节点左子树继续查找

public Node search(int val) {
        Node cur = root;
        while (cur != null) {
            if(cur.val == val) {
                return cur;
            } else if(cur.val > val){
                cur = cur.left;
            } else {
                cur = cur.right;
            }
        }
        return null;
}

3. 删除一个节点的值

先要查找到待删除节点的位置, 然后再进行删除
定义 cur 为待删除的元素, 定义 parent 为待删除元素的父节点
删除步骤需要分成以下三种情况:

  1. 如果 cur.left == null (要删除的节点没有左子树)
    (1). 如果 cur == root, 则 root == cur.right;
    (2). 如果cur 不为 root, 但 cur == parent. left, 则 parent. left = cur.right;
    (3) 如果 cur 不为 root, 但 cur == parent. right, 则 parent. right = cur. right;
  2. 如果 cur.right == null (要删除的节点没有右子树)
    (1). 如果 cur == root, 则 root == cur. left;
    (2). 如果cur 不为 root, 但 cur == parent. left, 则 parent. left = cur.left;
    (3) 如果 cur 不为 root, 但 cur == parent. right, 则 parent. right = cur. left;
  3. 如果 cur.left != null && cur. right != null (要删除的节点左右子树均存在)
    需要使用替换法进行删除, 将要删除的元素值替换成左子树的最大值或右子树的最小值, 这时只需要删除左子树最大值或右子树最小值即可(删除的情况不是cur.right == null 情况就是 cur.left == null 情况)
public boolean removeNode(Node parent, Node cur) {
        if(cur.left == null) {
            if(cur == root) {
                root = cur.right;
            } else if(cur == parent.left) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if(cur.right == null) {
            if(cur == root) {
                root = cur.left;
            } else if(cur == parent.left) {
                parent.left = cur.left;
            } else {
                parent.right = cur.left;
            }
        } else {
            // cur.left != null && cur.right != null
            Node target = cur.right;  // 寻找要替换的节点
            Node targetP = cur; 
            while (target.left != null) {
                targetP = target;
                target = target.left;
            }
            cur.val = target.val; // 此时target一定走到了右树的最左边, target 对应的节点值为右子树的最小值
            if(target == targetP.left) {
                targetP.left = target.right;
            } else {
                targetP.right = target.right;
            }
        }
        return true;
    }
    
    // 删除二叉搜索树中的某个节点
    public boolean remove(int val) {
        Node cur = root; // cur 表示要删除的节点
        Node parent = null; // parent 表示要删除节点的父节点

        // 找到要删除的节点位置
        while (cur != null) {
            if(cur.val == val) {
                return removeNode(parent, cur); // 要删除节点的位置
            } else if(cur.val > val) {
                parent = cur;
                cur = cur.left;
            } else {
                parent = cur;
                cur = cur.right;
            }
        }
        return false;
    }

3. 二叉搜索树的性能

最好情况下, 二叉搜索树是一棵完全二叉树, 它搜索节点的时间复杂度为: O(logn);
在这里插入图片描述
最坏情况下, 二叉搜索树会是一棵只有单分支的树, 则它搜索节点的时间复杂度为: O(n)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值