十分钟吃透 RAGFlow:从入门到精通,手把手教你搭建 RAG 知识库”

一、RAGFlow 概述

1、RAGFlow 是什么

RAGFlow 是一种融合了数据检索与生成式模型的新型系统架构。其核心在于将大规模检索系统与先进的生成式模型(如 Transformer、GPT 系列等)相结合。当面对用户查询时,它既能借助海量数据的知识库进行精准检索,又能利用生成模型生成符合上下文语义的自然语言回复。该系统主要包含数据检索和生成这两个关键模块 ,数据检索模块负责在海量数据中快速定位相关信息,生成模块则基于检索结果生成高质量的回答或文本内容。

2、RAGFlow 的特点
  1. 高效整合海量数据:凭借先进的检索算法,RAGFlow 能够在大数据中迅速找到相关信息,并将其运用到生成回答的过程中,大大提高了信息处理的效率。

  2. 增强生成质量:通过引入外部数据,生成模块得以突破模型记忆的限制,从而为用户提供更为丰富和准确的信息,有效提升了生成内容的质量。

  3. 应用场景广泛:在众多领域都能发挥重要作用,包括但不限于在线问答系统、智能客服、知识库问答、个性化推荐等,具有很强的通用性。

  4. 深度文档理解:能够从复杂格式的非结构化数据中精准提取知识,可处理如 Word、PPT、Excel、txt、图片、PDF、结构化数据、网页等多种格式的文档,满足多样化的数据需求。

  5. 模板化文本切片:支持基于模板的文本切片方式,不仅智能,而且可控可解释,同时提供多种文本模板供用户选择,以适应不同的应用场景。

  6. 可靠引用与低幻觉:文本切片过程可视化,方便人工干预和校对。生成的答案提供关键引用的快照并支持追根溯源,最大程度降低了大语言模型常出现的 “幻觉” 问题,使回答更具可靠性。

  7. 兼容异构数据源:对各类异构数据源表现出良好的兼容性,可支持丰富的文件类型,为数据的多样性处理提供了便利。

  8. 自动化工作流程:提供了简化、自动化的工作流程,全面优化的 RAG 工作流能够支持从个人应用到超大型企业的各类生态系统,并且大语言模型 LLM 以及向量模型均支持配置,还基于多路召回、融合重排序,同时提供易用的 API,便于集成到各类企业系统中。

3、RAGFlow 的应用场景
  1. 智能客服与虚拟助理:在电商平台等场景中,RAGFlow 能够实时从企业知识库中检索与用户查询相关的信息,如订单状态、产品信息、售后支持问题等,并生成精确、个性化的回答,极大地提升客户满意度和服务效率 。

  2. 文档生成与报告分析:对于企业年报、市场调查报告、技术文档等的自动生成,RAGFlow 能够从多个数据源中检索信息,并将其整合成结构化的文档或摘要,适用于大规模内容管理场景,提高文档生成的效率和质量。

  3. 实时数据分析与预测:以金融机构为例,RAGFlow 可实时收集和分析市场数据、财经新闻等信息,生成投资分析报告;在电力系统中,能够依据监控数据生成维护建议等,结合实时数据检索与生成分析,助力用户快速做出决策。

  4. 教育与科研辅助:智能辅导系统借助 RAGFlow,能够根据学生的问题动态生成解题步骤或学习资源;学生和研究人员可以利用它快速定位和分析相关的学术文献,高效完成文献综述的撰写,为教育和科研工作提供快速、精准的知识支持 。

  5. 医疗健康咨询:在线健康咨询平台利用 RAGFlow,从医学知识库中提取诊疗信息,并结合患者描述生成个性化的诊断和护理建议,为医疗健康领域的咨询服务提供有力支持。

  6. 法律和合规支持:在法律咨询平台中,RAGFlow 可实时从法律文本或法规中提取相关条款,并生成具体解读或建议,如合同条款优化建议等,帮助法律专业人员快速获取和分析法律信息。

  7. 内容推荐:新闻平台等可根据用户偏好,通过 RAGFlow 检索相关内容并生成个性化推荐内容,提升用户体验和内容传播的精准度。

4、RAGFlow系统架构

请添加图片描述

二、环境准备与系统搭建

环境需求

搭建 RAGFlow 系统前,需保证开发与运行环境符合以下条件:

  • 硬件配置:建议配备多核 CPU、16GB 及以上内存,以及支持高并发访问的存储设备;若需部署大规模检索服务,可选用分布式存储集群。
  • 操作系统:推荐使用 Linux 发行版(如 CentOS、Ubuntu),便于通过 Shell 脚本实现自动化管理;也支持 Windows 环境,但部署自动化脚本时可能需做适当调整。
  • 开发语言与工具:系统核心模块主要采用 Java 开发,同时结合 Shell 脚本完成自动化运维工作。
  • 依赖环境:需安装 Java 8 及以上版本,并配置 Maven 或 Gradle 进行依赖管理;数据检索部分可采用 ElasticSearch、Apache Solr 等开源检索引擎;生成模块依赖预训练模型,可借助 TensorFlow 或 PyTorch 实现。
服务器配置
  • CPU >= 4 核
  • RAM >= 16 GB
  • Disk >= 50 GB
  • Docker >= 24.0.0 & Docker Compose >= v2.26.1
安装

调整 max_map_count 值

要保证 vm.max_map_count 的值不低于 262144。

若想查看 vm.max_map_count 当前的数值,可执行以下命令:

$ sysctl vm.max_map_count

倘若 vm.max_map_count 的数值小于 262144,可按如下方式重新设置:

# 此处将其设为 262144:
$ sudo sysctl -w vm.max_map_count=262144

不过,你所做的修改会在系统下次重启时失效。要是想让改动永久生效,还需在 /etc/sysctl.conf 文件中,相应地更新 vm.max_map_count 的值:

vm.max_map_count=262144

克隆仓库代码

git clone https://github.com/infiniflow/ragflow.git

以下是改写后的内容,保持原意但表述更清晰流畅:

配置Docker镜像源与版本

步骤说明:切换至国内镜像源并启用Embedding模型

  1. 编辑项目配置文件 docker/.env

  2. 找到 RAGFLOW_IMAGE 配置项,将其值从默认配置:```
    RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim

    修改为阿里云国内镜像地址,并选择完整版(含Embedding模型):```
    RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.16.0
    
    

版本选择指南

根据您的需求选择合适的镜像版本:

镜像标签镜像大小Embedding模型稳定性说明
v0.16.0≈9GB✅ 包含稳定正式版本
v0.16.0-slim≈2GB❌ 不含轻量运行版(无模型)
nightly≈9GB✅ 包含每日构建(开发预览版)
nightly-slim≈2GB❌ 不含轻量开发版(无模型)

推荐配置

  • 生产环境建议使用 v0.16.0 版本
  • 测试环境可选择 nightly 版本获取最新功能
  • 仅需API服务时推荐使用 -slim 版本减少资源占用

运行命令拉取镜像

docker compose -f docker/docker-compose.yml up -d

请添加图片描述

查看日志

docker logs -f ragflow-server

提示下面提示说明启动成功

     ____   ___    ______ ______ __
    / __ \ /   |  / ____// ____// /____  _      __
   / /_/ // /| | / / __ / /_   / // __ \| | /| / /
  / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ /
 /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:9380
 * Running on http://x.x.x.x:9380
 INFO:werkzeug:Press CTRL+C to quit

访问IP,进入 RAGFlow,注意不是 9380 端口,Web是http://127.0.01默认为 80 端口

三、应用

注册账号

image-20250218135625403

注册完直接登录

image-20250218135717184

添加模型

本文用到的模型类型:Chat 和 Embedding。 Rerank 模型等后续在详细介绍。

点击右上角->模型提供商->添加模型

image-20250219161523490

填写模型信息,模型类型选 chat

image-20250219161441642

再添加一个 Embedding 模型用于知识库的向量转换(RAGFlow 默认也有 Embedding)

image-20250219161827675

在系统模型设置中配置聊天模型嵌入模型为我们刚刚添加的模型

image-20250219163114721

创建知识库

image-20250219162148401

填写相关配置

  • 文档语言:中文
  • 嵌入模型:选择我们自己运行的bge-m3:latest,也可以用默认的。具体效果大家自行评估

image-20250219162457976

上传文件

这里我自己造了一个测试文档来验证知识库,内容是编的,介绍一个 ABCD 工具,文档在文末提供下载。

image-20250219162616449

image-20250219162528361

文件上传后是未解析状态,需要解析才可以使用,点击解析

image-20250219162738069

解析成功后点击文件可以看到解析效果

image-20250219162906257

效果

image-20250219162931748

创建聊天

image-20250219163339314

设置模型。token 调整大一些

image-20250219163408611

验证效果
问题一:直接发送 ABCD

知识库回答

image-20250219163519619

原文档

image-20250219163648682

问题二:ABCD 错误代码有哪些

知识库回答

image-20250219164100751

原文档

image-20250219164043103

问题三:ABCD 支持哪些系统

知识库回答

image-20250219164230807

原文档

image-20250219164256131

问题四:ABCD 官网

知识库回答

image-20250219164944000

你也可以在回答的结果看到他引用的知识库

image-20250219165026381

四、总结

本文介绍了 RAGFlow 的基础使用方法,从演示效果来看尚可。然而,在实际应用场景中,各类文件格式与结构各不相同,文件解析成为一大难题。一旦解析不准确,即便使用性能强劲的 Deepseek-R1 大模型(经亲测),也会出现分析错误的情况。因此,在 RAG 过程中,文件解析、Embedding 以及 LLM 是提升准确率的三大关键攻克点。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~

在这里插入图片描述

👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。

在这里插入图片描述

9周成为大模型工程师

第1周:基础入门
  • 了解大模型基本概念与发展历程

  • 学习Python编程基础与PyTorch/TensorFlow框架

  • 掌握Transformer架构核心原理

  • 在这里插入图片描述

第2周:数据处理与训练
  • 学习数据清洗、标注与增强技术

  • 掌握分布式训练与混合精度训练方法

  • 实践小规模模型微调(如BERT/GPT-2)

第3周:模型架构深入
  • 分析LLaMA、GPT等主流大模型结构

  • 学习注意力机制优化技巧(如Flash Attention)

  • 理解模型并行与流水线并行技术

第4周:预训练与微调
  • 掌握全参数预训练与LoRA/QLoRA等高效微调方法

  • 学习Prompt Engineering与指令微调

  • 实践领域适配(如医疗/金融场景)

第5周:推理优化
  • 学习模型量化(INT8/FP16)与剪枝技术

  • 掌握vLLM/TensorRT等推理加速工具

  • 部署模型到生产环境(FastAPI/Docker)

第6周:应用开发 - 构建RAG(检索增强生成)系统
  • 开发Agent类应用(如AutoGPT)

  • 实践多模态模型(如CLIP/Whisper)

在这里插入图片描述

在这里插入图片描述

第7周:安全与评估
  • 学习大模型安全与对齐技术

  • 掌握评估指标(BLEU/ROUGE/人工评测)

  • 分析幻觉、偏见等常见问题

第8周:行业实战 - 参与Kaggle/天池大模型竞赛
  • 复现最新论文(如Mixtral/Gemma)
  • 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
  • 学习MoE、Long Context等前沿技术
  • 探索AI Infra与MLOps体系
  • 制定个人技术发展路线图
    在这里插入图片描述
    👉福利篇👈
    最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

<think>好的,我现在需要帮助用户了解如何使用Qwen3大模型搭建本地知识库。根据用户提供的引用内容,之前他们部署了Qwen2.5模型,现在想升级到Qwen3。我需要结合之前的回答和引用中的信息,给出一个清晰的步骤指南。 首先,用户提到了Ollama和Dify的部署,所以可能需要在程中包含这些工具的使用。用户之前部署了Qwen2.5,现在转向Qwen3,我需要确认Qwen3是否支持类似的部署方法,或者是否需要额外的步骤。 接下来,用户提到要结合本地知识库作为Dify的上下文,这意味着需要将知识库集成到Dify中,可能涉及文档加载、向量化存储和检索增强生成(RAG)的应用。这部分需要详细说明如何处理知识库文件,如何配置Dify来使用这些数据。 另外,用户提供的引用中有关于资料领取的部分,但根据系统指令,应避免无关推广,所以需要忽略这部分内容,专注于技术步骤。 还需要考虑用户可能的痛点,比如环境配置、模型下载、知识库格式要求等。需要分步骤解释,确保用户能逐步操作,同时注意技术细节的正确性,比如正确的Ollama命令、Dify的配置参数等。 最后,生成相关问题时要围绕搭建过程中的常见问题、优化方法和应用场景展开,帮助用户进一步探索。</think>### 使用Qwen3大模型搭建本地知识库的详细程 #### 一、环境准备与模型部署 1. **私有化部署Qwen3模型** 使用Ollama工具部署Qwen3模型(7B或更高参数版本): ```bash # 拉取Qwen3模型(假设已支持) ollama pull qwen3:7b # 启动模型服务 ollama serve ``` 若官方未直接支持,可手动构建`Modelfile`: ```dockerfile FROM qwen/qwen3:7b PARAMETER temperature 0.7 SYSTEM "你是一个专业的知识库问答助手" ``` 2. **验证模型可用性** 通过CURL测试API接口: ```bash curl http://localhost:11434/api/generate -d '{ "model": "qwen3:7b", "prompt": "量子力学三大基本原理是什么?" }' ``` #### 二、知识库构建与处理 1. **文档格式规范** - 支持格式:PDF/TXT/MarkDown/HTML - 推荐预处理:使用Python库清洗文本 ```python from bs4 import BeautifulSoup def clean_html(raw_html): soup = BeautifulSoup(raw_html, "html.parser") return soup.get_text() ``` 2. **向量化存储** 使用LangChain构建向量数据库: ```python from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh") documents = [...] # 预处理后的文档列表 vector_db = FAISS.from_documents(documents, embeddings) vector_db.save_local("my_knowledge_base") ``` #### 三、Dify平台集成(社区版) 1. **部署Dify服务** ```bash git clone https://github.com/langgenius/dify cd dify/docker docker-compose up -d ``` 2. **配置知识库连接** 在Dify控制台: - 新建应用 → 选择「知识库问答」 - 上传预处理文档或连接现有向量库 - 设置检索参数: ```yaml retriever: search_type: "similarity" k: 5 score_threshold: 0.7 ``` 3. **RAG流程配置** ```python # 自定义处理链示例 from langchain_core.runnables import RunnablePassthrough retriever = vector_db.as_retriever() qa_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt_template | llm | output_parser ) ``` #### 四、效果优化技巧 1. **混合检索策略** 结合关键词搜索与向量检索: ```python from langchain.retrievers import BM25Retriever, EnsembleRetriever bm25_retriever = BM25Retriever.from_documents(docs) ensemble_retriever = EnsembleRetriever( retrievers=[bm25_retriever, vector_retriever], weights=[0.4, 0.6] ) ``` 2. **查询扩展** 使用Query2Doc技术增强检索: ```python from transformers import pipeline expander = pipeline("text-generation", model="Qwen/Qwen1.5-7B") expanded_query = expander(f"生成与'{query}'相关的三个扩展问题") ``` #### 五、监控与维护 1. **日志分析配置** ```bash # 查看Dify请求日志 docker logs -f dify-api ``` 2. **知识库更新机制** ```python # 增量更新脚本示例 def update_knowledge(new_docs): global vector_db vector_db.add_documents(new_docs) vector_db.save_local("my_knowledge_base") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值