【Python基础绘图】rioxarray读取tif并可视化

rioxarray读取tif并可视化

在这里插入图片描述

01 引言:

python通过rioxarray轻松读取tif数据,并借助cartopy进行可视化,现记录在此分享给更多有需要的同学。

02 结果如下:

在这里插入图片描述

03 代码如下:

# -*- encoding: utf-8 -*-
'''
@File    :   GFHD.PY
@Time    :   2022/02/28 13:42:59
@Author  :   HMX 
@Version :   1.0
@Contact :   kzdhb8023@163.com
'''

# here put the import lib
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import cmaps
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from cartopy.mpl.ticker import LatitudeFormatter, LongitudeFormatter
import rioxarray as rxr

def cm2inch(value): 
    return value/2.54


size1 = 10.5
fontdict = {'weight': 'bold','size':size1,'color':'k','family':'SimHei'}
mpl.rcParams.update(
    {
    'text.usetex': False,
    'font.family': 'stixgeneral',
    'mathtext.fontset': 'stix',
    "font.family":'serif',
    "font.size": size1,
    "mathtext.fontset":'stix',
    "font.serif": ['Times New Roman'],
    }
    )


proj=ccrs.PlateCarree()
fig,ax = plt.subplots(1, 1,figsize=(cm2inch(16),cm2inch(9)),dpi=100, subplot_kw={'projection': proj})
extent = [-180,180,-90,90]

ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.5, zorder=2,color = 'k')# 添加海岸线
ax.add_feature(cfeature.LAND)#添加陆地

ax.set_xticks(np.arange(extent[0], extent[1] + 1, 60), crs = proj)
ax.set_yticks(np.arange(extent[-2], extent[-1] + 1,30), crs = proj)
ax.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label=False))
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label=False))
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.set_extent(extent, crs=ccrs.PlateCarree())
ax.minorticks_on()

filename=r'E:\Project\World\GFHD2005\GFHD2005_Resample.TIF'
ds = rxr.open_rasterio(filename)

lon,lat = np.meshgrid(ds['x'],ds['y'])
data = ds[0]

lev=np.arange(0,51,5)
cf=ax.contourf(lon,lat,data,levels=lev,extend='neither',transform=ccrs.PlateCarree(),cmap=cmaps.rainbow)
plt.subplots_adjust(right=0.86)
ax2 = fig.add_axes([0.875,0.17,0.02,0.654])
b=plt.colorbar(cf,shrink=0.93,orientation='vertical',extend='both',pad=0.035,aspect=30,ticks=lev,cax=ax2)
b.ax.set_ylabel(r'冠层高度/$\mathrm{m}$',fontdict = fontdict)

plt.savefig(r'E:\Project\Figure\GFHD2005.png',dpi = 600)
plt.show()

​如果对你有帮助的话,请‘点赞’、‘收藏’,‘关注’,你们的支持是我更新的动力。
欢迎关注公众号【森气笔记】。

TIFF图像进行可视化是数据处理和分析中的常见需求,尤其是在遥感、医学成像以及科学计算领域。Python 提供了多种工具来实现这一目标,以下是一些常用的 TIFF 图像可视化方法: ### 使用 `tifffile` 和 `matplotlib` 该方法适用于读取显示标准的 TIFF 图像文件。使用 `tifffile` 模块可以轻松地将 TIFF 文件加载为 NumPy 数组,随后利用 `matplotlib.pyplot.imshow()` 函数进行可视化: ```python import tifffile as tiff import matplotlib.pyplot as plt # 读取TIFF图像文件 tiff_path = "F:\\image\\000001.tif" img = tiff.imread(tiff_path) # 显示图像 plt.imshow(img) plt.colorbar() # 可选:添加颜色条 plt.show() ``` ### 对多通道图像进行百分位拉伸 对于具有多个波段(例如卫星图像)的 TIFF 文件,可以通过对每个通道进行百分位数拉伸以增强对比度,从而改善可视化效果。这种方法类似于归一化,但会排除极端值的影响: ```python import numpy as np def scale_percentile(matrix): w, h, d = matrix.shape matrix = np.reshape(matrix, [w * h, d]).astype(np.float64) mins = np.percentile(matrix, 1, axis=0) # 计算第1百分位数作为最小值 maxs = np.percentile(matrix, 99, axis=0) - mins # 计算第99百分位数减去最小值 matrix = (matrix - mins[None, :]) / maxs[None, :] # 线性变换到[0,1]区间 matrix = np.reshape(matrix, [w, h, d]) matrix = matrix.clip(0, 1) # 截断超出范围的值 return matrix # 应用函数对前三通道进行可视化 plt.imshow(scale_percentile(img[:,:,:3])) plt.show() ``` 此代码片段通过调整图像的动态范围来提高视觉可读性,尤其适合包含大量冗余信息或噪声的数据[^2]。 ### 使用图像金字塔进行可视化 在某些情况下,可能需要同时展示不同分辨率下的图像版本,这时可以采用图像金字塔技术。这不仅有助于直观理解特征金字塔的思想,还能提供从全局到局部的多层次观察视角: ```python composite_image = np.zeros((total_height, total_width, channels), dtype=np.float32) i_row = 0 for p in pyramid[1:]: # 假设pyramid是一个预先定义好的图像金字塔列表 n_rows, n_cols = p.shape[:2] composite_image[i_row:i_row + n_rows, cols:cols + n_cols] = p i_row += n_rows plt.imshow(composite_image) plt.show() ``` 这种方法能够有效组织和呈现多尺度数据,特别适用于需要跨尺度比较的应用场景[^3]。 ### 医学图像可视化 如果处理的是医学影像(如CT扫描),通常还需要附带额外的信息标签以便于诊断与研究。此时可以在绘图时加入标题说明: ```python ax[i//4, i%4].set_title('Modality: {Modality} Age: {Age}\nSlice: {ID} Contrast: {Contrast}'.format(**data_row)) ``` 这样的做法使得每张图片都能携带其对应的元数据,增加了图像展示的信息量[^5]。 综上所述,Python 中有多种途径可以完成 TIFF 图像的可视化工作,具体选择哪种方式取决于实际应用的需求及图像本身的特性。上述方法涵盖了基础的图像显示、色彩校正、多尺度表示以及特定领域的高级用法,应该能满足大部分情况下的要求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值