揭秘数据库聚类查询:聚合与算法实战指南

数据库中的“聚类查询”通常有两种理解方向:聚合查询(Aggregation Query)基于聚类算法的数据分析。以下是两种场景的实践要点与技术解析:


🔢 一、聚合查询(SQL原生支持)

核心目标:数据汇总统计(如计数、求和、平均值等)。
关键技术组件

  1. 聚合函数

    • COUNT():统计行数(含COUNT(*)计数所有行,COUNT(column)忽略NULL)。
    • SUM()/AVG():计算总和与平均值(仅适用于数值类型)。
    • MAX()/MIN():提取极值。
  2. 分组机制(GROUP BY

    • 按指定字段分组统计(如按部门统计平均薪资):
      SELECT department, AVG(salary) FROM employees GROUP BY department;
      
    • 多级分组:GROUP BY col1, col2(按字段顺序分层聚合)。
  3. 过滤分组结果(HAVING

    • 对聚合结果二次筛选(如筛选平均薪资>10k的部门):
      SELECT department, AVG(salary) 
      FROM employees 
      GROUP BY department 
      HAVING AVG(salary) > 10000;
      
    • ⚠️ 与WHERE区别WHERE在分组前过滤原始数据,HAVING在分组后过滤聚合结果。

执行流程
FROM → WHERE → GROUP BY → 聚合计算 → HAVING → SELECT → ORDER BY

适用场景:业务报表、数据摘要(如销售总额统计、用户活跃度分析)。


🧠 二、基于聚类算法的数据分析

核心目标:发现数据内在分组模式(如用户分群、异常检测)。
数据库预处理 + 外部算法执行

  1. SQL预处理步骤

    • 特征选择&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码的余温

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值