在互联网,AI浪潮的推动下,程序员已然成为新时代的民工,他们既享受着高薪的待遇,也承受着996、“青春饭”的很多压力。作为程序员你有职业焦虑吗?
今天我和大家深度探讨下程序员焦虑的背后,以及一些个人经验感悟。
一、焦虑背后的客观原因
① 首先说下直接原因:
就是中国人才太多了,社会竞争激烈,社会整体上的平均富裕水平也不足够,所以人力选择的成本非常高,直接导致了有人单位粗犷 35+年龄歧视、学历歧视等一刀切筛选求职者等现象。
再者,国内IT行业还有个通病,加剧了青春饭的现象——也就是 过于专注于应用层面的堆砌,看着一个个应用开发需求,不断地996,但实际技术积累偏少,这也带来程序员青春饭的直接原因。很多人经常拿国内和国外的程序员做对比,国外程序猿没有996,没有青春饭。究其原因,国外也比较注重于底层技术(如Windows操作系统、数据库、语言编译,底层技术通用很强,技术迭代慢),并早早完成技术垄断!
②再者说下根本原因:
这个现象的核心在于,这可以说是职业特性导致的了。程序员,不就是标准化自动化技术的创造者,咱们天职就是通过消灭人工经验积累的差距,带来标准化自动化的啊!然后历史积累的经验越来约不值钱,越来越焦虑了。
而且通常还会将技术开源!更是直接拉低了技术门槛了,这也大大减少有经验的程序员和初学者的差距,加剧了青春饭困境,年龄焦虑。
举个例来说,算法程序员花哥花了两年时间积攒了丰富的深度学习模型优化的经验,有了这方面丰富经验,花哥可以又快又好地训练出一个个高效的模型。这份经验可以明显把花哥和初学者的差距拉得大大的。
但是作为一个优秀的程序员,花哥肯定是想把这部分经验标准化自动化啊!所以他搞了一个开箱即用的深度学习自动化优化框架。还是开源的!
通过这个框架告别了之前繁琐的工作,还能带来又快模型结果。从此,就深度学习模型优化的这项任务而言,有了自动化开源框架加持,花哥和其他初学的差距就没了~花哥可以做点其他事了,也可以失业了[狗头]
这里眼尖的读者可能就问,既然自动化是程序员的天职,但对于开源,我可以选择不开源啊!这样我不就垄断躺平了。。
这个思路确实很不错,但是在开放市场上,没有足够的开源交流,你的技术可能容易就落后了。而在某些小领域任务上面,(事实上我就是这样做的)。维护一份私人代码,需要的时候花个几分钟维护下跑跑,然后多出来的时间就可以摸鱼了。当然,本文对于开源文化是肯定的,我们都是开源代码的受益者,开源也大大加快IT行业的发展!
在这样的编程环境,其实程序员门槛确实很低,我们常常戏称程序员是:**面向谷歌Ctrl+C编程,**只要会点基础的编程语法,遇到任务或bugs,谷歌或 ChatGPT一下,找到相关代码,复制粘贴,调试一下,就大功告成了!可见, 经验技术门槛在程序员存在感确实弱,对比年轻人年长的程序员确实没啥优势。
二、怎么做!?
技术,无疑是程序员们赖以生存的基石,但就如同耕牛身上的套绳与耕犁,我们时常被技术牵得晕头转向。特别是当前火爆的AI大模型相关的工具,也推进了程序员被下岗的进程。
技术的更新换代犹如走马灯般迅速,我们似乎总是追赶不及,仿佛刚刚迈入农耕时代,又已骤然步入工业文明的洪流。
然而,在这快速变革的时代里,在客观的社会现象中,我们如何寻找一条破局之道?或许,除了深耕技术之外,我们还应该关注技术之外的东西,比如产品、需求等。毕竟,只有真正立足于解决现实需求,才能为自身的发展找到更为宽广的道路。
根本上观念要改变,技术只是工具,不要成为工具人,工具人逃离不了被淘汰的命运。假舆马者非利足也,假舟楫者非能水,借助各种资源才能做大事。
回到程序员职业规划中,个人有几点感悟,与君共勉!
- 持续学习!当现有的任务自动化以后,原来的技术落后了,但是对程序员的需求并不会没了,数字化应用需要不断发展,更新的需求也会不断地出来(数字化是刚需!),我们可以保持学习新的技术,解决好问题。
- **多参与底层代码开发,底层技术的更新迭代比较慢。**个人比较不那么容易被新的技术淘汰掉。
- **关注业务需求,发现问题解决问题才是程序员的核心能力。**在IT行业,能够透彻理解需求,能搞出好产品,就不怕没工作,实在不行还可以创业!
才是程序员的核心能力。**在IT行业,能够透彻理解需求,能搞出好产品,就不怕没工作,实在不行还可以创业! - **职业晋升和副业思维:**争取晋升管理岗,这可以意味着你有更高的不可替代性。再者副业思维,通过副业,不仅可以获得额外的收入,还可以积累更多的经验、提升技能,为未来的职业发展更多可能。
那么,如何快速系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
9周快速成为大模型工程师
第1周:基础入门
-
了解大模型基本概念与发展历程
-
学习Python编程基础与PyTorch/TensorFlow框架
-
掌握Transformer架构核心原理
-
第2周:数据处理与训练
-
学习数据清洗、标注与增强技术
-
掌握分布式训练与混合精度训练方法
-
实践小规模模型微调(如BERT/GPT-2)
第3周:模型架构深入
-
分析LLaMA、GPT等主流大模型结构
-
学习注意力机制优化技巧(如Flash Attention)
-
理解模型并行与流水线并行技术
第4周:预训练与微调
-
掌握全参数预训练与LoRA/QLoRA等高效微调方法
-
学习Prompt Engineering与指令微调
-
实践领域适配(如医疗/金融场景)
第5周:推理优化
-
学习模型量化(INT8/FP16)与剪枝技术
-
掌握vLLM/TensorRT等推理加速工具
-
部署模型到生产环境(FastAPI/Docker)
第6周:应用开发 - 构建RAG(检索增强生成)系统
-
开发Agent类应用(如AutoGPT)
-
实践多模态模型(如CLIP/Whisper)
第7周:安全与评估
-
学习大模型安全与对齐技术
-
掌握评估指标(BLEU/ROUGE/人工评测)
-
分析幻觉、偏见等常见问题
第8周:行业实战 - 参与Kaggle/天池大模型竞赛
- 复现最新论文(如Mixtral/Gemma)
- 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
- 学习MoE、Long Context等前沿技术
- 探索AI Infra与MLOps体系
- 制定个人技术发展路线图
👉福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】