半监督学习与标签传播算法在 Python 中的实现
半监督学习是一种机器学习方法,它利用有标签数据和无标签数据来进行模型训练。与传统的监督学习只使用有标签数据不同,半监督学习通过利用无标签数据的信息,可以在数据有限或标签获取困难的情况下提升模型性能。标签传播算法是半监督学习中常用的方法之一,它通过在数据图上传播已知标签来预测无标签数据的标签。
在本文中,我们将使用 Python 实现半监督学习和标签传播算法。我们将首先介绍半监督学习的基本原理,然后讨论标签传播算法的工作原理,并提供相应的源代码示例。
半监督学习的基本原理
半监督学习的核心思想是利用有标签数据和无标签数据的分布信息来学习一个更准确的模型。其基本原理可以总结为以下几个步骤:
- 使用有标签数据训练一个初始模型。
- 利用该模型预测无标签数据的标签。
- 将预测结果作为伪标签,与有标签数据合并形成新的训练集。
- 使用新的训练集重新训练模型。
- 重复步骤2至4,直到模型收敛或达到预定的迭代次数。
标签传播算法的工作原理
标签传播算法是一种基于图的半监督学习方法,它基于数据之间的相似性进行标签传播。算法的主要思想是假设相似的数据具有相似的标签,通过在数据图上进行标签传播来预测无标签数据的标签。
下面是标签传播算法的基本步骤:
-
构建数据图:将有标签数据和无标签数据构建成一个图。图的节点表示数据样本&#