K-means算法的多种实现及数据聚类的Matlab代码

111 篇文章 ¥59.90 ¥99.00
本文详细介绍了K-means算法的三种实现方式:标准K-means、K-means++和Mini-Batch K-means,包括各自的主要步骤,并提供了对应的Matlab代码示例。这些算法常用于数据聚类,读者可以根据需求选择合适的算法应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-means算法的多种实现及数据聚类的Matlab代码

K-means算法是一种常用的聚类算法,它将数据集划分为K个不同的簇,使得每个数据点都属于离其最近的簇。在本文中,我们将介绍K-means算法的几种实现方法,并提供相应的Matlab代码来演示其应用。

K-means算法的基本思想是通过迭代的方式,将数据点分配给最近的簇,并根据分配结果更新簇的质心,直到达到收敛条件。下面我们将介绍三种常见的K-means算法实现方法:标准K-means算法、K-means++算法和Mini-Batch K-means算法。

  1. 标准K-means算法
    标准K-means算法是最基本的K-means实现方法。其主要步骤如下:

(1)随机初始化K个质心。
(2)将每个数据点分配给离其最近的质心所属的簇。
(3)根据分配结果,更新每个簇的质心为该簇中所有数据点的平均值。
(4)重复步骤(2)和(3),直到质心不再发生明显的变化或达到预定的迭代次数。

以下是Matlab代码示例,实现了标准K-means算法:

function
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值