Pandas聚合操作与案例:探索数据的统计摘要

285 篇文章 ¥59.90 ¥99.00
本文详细介绍了Pandas库中的聚合操作,包括计算平均值、总和、最大值和最小值,以及统计描述。通过实例展示了如何使用mean、sum、max、min和describe函数,以及如何结合groupby和agg进行分组聚合,帮助读者理解如何利用Pandas对数据进行统计分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas是一个功能强大的数据分析库,提供了丰富的工具和函数,用于处理和分析结构化数据。其中,聚合操作是数据分析中的重要环节,它允许我们对数据进行分组并计算各组的统计摘要。本文将介绍Pandas中常用的聚合操作,并通过案例演示其用法。

在开始之前,我们首先需要导入Pandas库,并准备一份示例数据。以下是一个简单的学生考试成绩表,包含学生姓名、科目和对应的成绩:

import pandas as pd

data = {
    '姓名': ['张三', '李四', '王五', '赵六', '钱七', '孙八', '周九', '吴十'],
    '科目': ['数学', '数学', '语文', '语文', '英语', '英语', '数学', '语文'],
    '成绩': [80, 90, 85, 95, 70, 75, 88, 92]
}

df = pd.DataFrame(data)

上述代码创建了一个名为df的DataFrame对象,其中包含了学生的考试成绩数据。

现在,让我们来探索一些常用的聚合操作。

  1. 计算平均值(mean࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值