Polars 学习教程:使用 Python 进行数据操作和分析

272 篇文章 ¥59.90 ¥99.00
本教程介绍了Polars库,一个基于Rust的高性能数据处理库,提供类似Pandas的API。通过Python,你可以安装Polars,创建DataFrame,查看内容,选择列和行,以及添加新列。Polars在数据操作和分析方面展现出优秀的运行时性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Polars 是一个基于 Rust 编写的快速数据操作和分析库,它提供了类似于 Pandas 的 API,并具有更高的运行时性能。本教程将介绍如何使用 Polars 库来进行数据操作和分析,使用 Python 作为编程语言。

安装 Polars

在开始使用 Polars 之前,我们需要先安装它。可以通过以下命令使用 pip 安装 Polars:

pip install polars

安装完成后,我们可以开始使用 Polars 进行数据操作和分析。

导入 Polars

首先,我们需要导入 Polars 库:

import polars as pl

创建 Polars 的 DataFrame

Polars 使用 DataFrame 作为主要的数据结构。DataFrame 可以看作是一个二维表格,类似于 Pandas 中的 DataFrame。我们可以使用 Polars 创建一个 DataFrame,然后对其进行各种操作

### 关于 Polars使用教程 #### Polars 库简介 Polars 是一种用于高效数据处理分析Python 库,其设计目标是在性能易用性之间取得平衡。通过利用现代硬件架构的优势,Polars 提供了显著优于传统 Pandas 的计算能力[^1]。 #### 安装与配置 要开始使用 Polars,需先完成安装过程。可以通过 `pip` 或者 `conda` 来安装该库: ```bash pip install polars ``` 或者对于 Conda 用户: ```bash conda install -c conda-forge polars ``` #### 基本操作示例 以下是几个常见的 Polars 数据处理场景及其对应的实现方式: ##### 创建 DataFrame 创建一个简单的 DataFrame 可以如下所示: ```python import polars as pl data = { "name": ["Alice", "Bob", "Charlie"], "age": [25, 30, 35], "city": ["New York", "Los Angeles", "Chicago"] } df = pl.DataFrame(data) print(df) ``` ##### 过滤数据 假设需要筛选年龄大于 30 的记录,则可执行以下代码: ```python filtered_df = df.filter(pl.col("age") > 30) print(filtered_df) ``` ##### 排序数据 按照某一列进行排序也是常见需求之一。例如按城市名称升序排列: ```python sorted_df = df.sort("city") print(sorted_df) ``` ##### 聚合运算 对某些字段求平均值或其他统计量同样容易实现。比如获取每个人的平均年龄: ```python average_age = df.select(pl.mean("age")) print(average_age) ``` 以上仅展示了部分基础功能;随着深入学习,还可以探索更多复杂而强大的特性。 #### 高级主题概览 除了上述基础知识外,还有许多高级技术值得掌握,包括但不限于窗口函数、分组聚合、时间序列分析等。这些工具能够帮助解决更复杂的业务逻辑问题。 #### 学习资源推荐 为了更好地理解运用 Polars,建议参考官方文档以及其他社区贡献的学习材料。它们提供了详尽的例子技术细节说明,有助于快速上手并精通此框架的应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值