遥感图像语义分割——数据增广
遥感图像语义分割是指将带有语义信息的遥感图像进行像素级别的分类,即将每一个像素点按照其所属的类别进行划分。该技术在遥感领域中有着广泛的应用,如城市规划、农业监测、环境保护等方面。然而,由于遥感图像训练样本相对较少,导致模型很容易过拟合。因此,在遥感图像语义分割中,数据增广技术是非常必要的。
数据增广可以通过对现有数据进行旋转、翻转、缩放、平移等变换操作扩充训练集,有效地提高模型的泛化能力。本文将介绍如何使用Python实现一些常用的数据增广方法。
首先,我们需要加载遥感图像数据集,并依次对每个数据进行增广。以下为旋转操作的代码示例:
from PIL import Image
import numpy as np
# 加载图像数据
img = Image.open