遥感图像语义分割——数据增广

395 篇文章 ¥29.90 ¥99.00
遥感图像语义分割技术用于像素级别分类,广泛应用于城市规划、农业监测等领域。由于样本有限易致过拟合,数据增广成为关键。本文介绍了Python中实现旋转、翻转等数据增广方法,以增强模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遥感图像语义分割——数据增广

遥感图像语义分割是指将带有语义信息的遥感图像进行像素级别的分类,即将每一个像素点按照其所属的类别进行划分。该技术在遥感领域中有着广泛的应用,如城市规划、农业监测、环境保护等方面。然而,由于遥感图像训练样本相对较少,导致模型很容易过拟合。因此,在遥感图像语义分割中,数据增广技术是非常必要的。

数据增广可以通过对现有数据进行旋转、翻转、缩放、平移等变换操作扩充训练集,有效地提高模型的泛化能力。本文将介绍如何使用Python实现一些常用的数据增广方法。

首先,我们需要加载遥感图像数据集,并依次对每个数据进行增广。以下为旋转操作的代码示例:

from PIL import Image
import numpy as np

# 加载图像数据
img = Image.open
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值