Tensor

PyTorch中的tensor,一般翻译为张量。张量是一种特殊的数据结构,与数组和矩阵非常相似。

在 PyTorch 中,使用张量来编码模型的输入和输出,以及模型的参数。

张量类似于 NumPy 的 ndarray,但是,张量可以在 GPU 或其他硬件加速器上运行。

事实上,如果在CPU上,张量和 NumPy 数组通常可以共享相同的底层内存,从而无需复制数据:

import torch
import numpy as np

#! convert tensor to numpy array
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
#! 张量的变化反映在 NumPy 数组中
t.add_(1)
print(f"t: {t}")
print(f"n: {n}")

#! convert numpy array to tensor
n = np.ones(5)
t = torch.from_numpy(n)
#! NumPy 数组的变化反映在张量中
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")

张量还针对自动微分进行了优化。

总结:tensor是numpy ndarray的升级,能够在GPU以及其他加速硬件设备上运行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值