论文印象
基于运动学的方法与深度学习(learning based,data-driven)的方法相结合。或者说更像是规划的方法结合深度学习用于预测任务。先规划出多条可行驶的路线,然后从这些路线中挑选出最有可能的路线做为预测的轨迹。
与仅的基于运动学或者基于深度学习的方法对比。运动学的方法泛化能力不足,不同的场景可能需要特别的处理,且难以预测长期的未来轨迹。深度学习的方法可解释性不足(即使是anchor-based的方法),可能预测到不合理的轨迹,例如预测的轨迹跑出车道。
这篇论文的方法结合了两者的优点。首先,使用基于运动学的方法(必须结合地图),生成多条可能的轨迹。然后,使用学习一个打分的模型(结合环境信息、交互信息等),从多条可能的轨迹中选择最优可能的轨迹。
理论上,这种方法输出的轨迹更加合理,符合运动学规律,且遵循道路结构。但是,最有可能的轨迹输出可能会不稳定,即上一时刻的输出左变道轨迹,下一时刻使出右变道轨迹,这也是因为轨迹预测本身就是一个不适定的问题。
实际应用中,此种框架(