Scrapy入门教程实例

Scrapy

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

scrapy的整体框架如下所示:
这里写图片描述

Scrapy主要包含了以下几个组件:

  • 引擎(Scrapy):用来处理整个系统的数据流,触发事务(框架核心)。
  • 调度器(Scheduler):用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  • 下载器(Downloader):用于下载网页内容,并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
  • 爬虫(Spiders):爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
  • 项目管道(Pipeline):负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares):位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 爬虫中间件(Spider Middlewares):介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件(Scheduler Middewares):介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
  2. 引擎把URL封装成一个请求(Request)传给下载器
  3. 下载器把资源下载下来,并封装成应答包(Response)
  4. 爬虫解析Response
  5. 解析出实体(Item),则交给实体管道进行进一步的处理
  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

安装Scrapy命令:

pip install scrapy

第一个爬虫

1、进入到打算存储代码的目录中,运行下列命令,创建一个新的Scrapy项目。

scrapy startproject scrapydemo

命令会生成如下目录文件:
这里写图片描述

这些文件分别是:

  • scrapy.cfg: 项目的配置文件
  • scrapydemo/ :该项目的python模块,之后将在这里加入代码
  • items.py:项目中的items文件
  • middlewares.py:项目中的middlewares文件
  • pipelines.py:项目中的pipelines文件
  • setting.py:项目的设置文件
  • spiders/:放置spider代码的目录

接下来我们要爬取我另一篇博客的内容
https://blog.csdn.net/hampton_chen/article/details/52229327

通过以下命令进入该项目所在的目录,并在spiders目录下生成一个spider文件csdn.py:

cd scrapydemo
scrapy genspider csdn https://blog.csdn.net/hampton_chen/article/details/52229327

打开该博客文章如下,我们这次主要抓取文件的标题、发布时间和阅读数
这里写图片描述

2、编写items.py文件:
在items.py文件中定义我们要抓取的数据:

import scrapy

class ScrapydemoItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    time = scrapy.Field()
    read_count = scrapy.Field()

3、实现Pipelines
Pipeline用来对spider返回的item列表进行数据的保存等操作,可以写入文件或保存到数据库,这里我只是将数据打印出来。
代码如下:

class ScrapydemoPipeline(object):
    def process_item(self, item, spider):
        print('======================')
        text = "标题:" + item['title'] +"\n发布时间:" + item['time'] + "\n" + item['read_count']
        print(text)
        print('======================')
        return item

4、修改settings配置

BOT_NAME = 'scrapydemo'
SPIDER_MODULES = ['scrapydemo.spiders']
NEWSPIDER_MODULE = 'scrapydemo.spiders'

上面三行是系统自动配置的,不需要修改,我们主要添加下列代码:

USER_AGENT = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36'
ITEM_PIPELINES = {
   'scrapydemo.pipelines.ScrapydemoPipeline': 300,
}

5、实现spider
在实现spider之前,我们需要通过浏览器打开我们要抓取的目标网站,通过F12打开页面调试窗口,找到我们要抓取的数据对应的element,如下图:
这里写图片描述
这里写图片描述

Spider是一个继承自scrapy.contrib.spiders.CrawlSpider的Python类,有三个必需的定义的成员

name: 名字,这个spider的标识,在爬虫项目中是唯一的

start_urls:一个url列表,spider从这些网页开始抓取

parse():一个方法,当start_urls里面的网页抓取下来之后需要调用这个方法解析网页内容,同时需要返回下一个需要抓取的网页,或者返回items列表

所以在spiders目录下新建一个spider,csdn.py:

# -*- coding: utf-8 -*-
import scrapy
from scrapydemo.items import ScrapydemoItem

class CsdnSpider(scrapy.Spider):
    name = "csdn"
    allowed_domains = ["blog.csdn.net"]
    start_urls = ['https://blog.csdn.net/hampton_chen/article/details/52229327/']

    def parse(self, response):
        item = ScrapydemoItem()

        item['title'] = response.xpath('//h1[@class="title-article"]/text()').extract()[0]
        item['time'] = response.xpath('//span[@class="time"]/text()').extract()[0]
        item['read_count'] = response.xpath('//span[@class="read-count"]/text()').extract()[0]

        yield item

至此代码已经写完,接下来就是如何启动爬虫。

启动爬虫

运行程序有两种方法:
1、直接命令行启动
进入到项目的根目录下,执行下列命令:

scrapy crawl csdn

2、新建一个.py文件,写入启动命令,例如run.py:

# -*- coding: utf-8 -*-
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'csdn'])

注意:crawl后面跟的是spider的name,不是项目名

执行命令得到结果如下图所示:
这里写图片描述

05-28
### Scrapy框架的使用指南 Scrapy 是一个快速、高层次的 Web 抓取和爬虫框架,用于从网页中提取结构化数据[^1]。以下是关于如何使用 Scrapy 框架进行网页抓取的详细指南。 #### 1. 安装 Scrapy 在开始使用 Scrapy 之前,需要确保已正确安装该框架。大多数情况下,可以通过 `pip` 工具轻松安装 Scrapy。然而,在某些操作系统上可能会遇到依赖项问题,例如 macOS 上的加密构建问题[^3]。以下是一些安装步骤和注意事项: - **Linux**: 确保系统已安装必要的构建工具和依赖项。 - **macOS**: 如果遇到加密问题,可以尝试通过 Homebrew 安装 OpenSSL 并设置环境变量。 - **Windows**: 使用标准的 `pip install scrapy` 命令即可完成安装。 ```bash # 安装 Scrapy pip install scrapy # macOS 用户解决加密问题 brew install openssl export LDFLAGS="-L/usr/local/opt/openssl/lib" export CPPFLAGS="-I/usr/local/opt/openssl/include" ``` #### 2. 创建 Scrapy 项目 创建一个新的 Scrapy 项目是启动爬虫的第一步。通过以下命令可以生成一个基础项目结构: ```bash scrapy startproject myproject ``` 这将生成一个包含必要文件和目录的项目结构,其中包括 `spiders` 目录,用于存放具体的爬虫脚本[^2]。 #### 3. 编写爬虫 Scrapy 的核心功能是通过编写爬虫来抓取目标网站的数据。以下是一个简单的爬虫示例,用于抓取某个网站的标题和链接: ```python import scrapy class ExampleSpider(scrapy.Spider): name = "example" # 爬虫名称 allowed_domains = ["example.com"] # 允许爬取的域名 start_urls = ["https://example.com"] # 初始请求的 URL def parse(self, response): for item in response.css("div.item"): # 使用 CSS 选择器提取数据 yield { "title": item.css("h2.title::text").get(), # 提取标题 "link": item.css("a::attr(href)").get(), # 提取链接 } ``` #### 4. 配置项目 Scrapy 提供了灵活的配置选项,允许用户自定义爬虫行为。可以在 `settings.py` 文件中调整以下参数: - `USER_AGENT`: 设置用户代理字符串以模拟浏览器访问。 - `DOWNLOAD_DELAY`: 控制下载延迟,避免对目标网站造成过大压力。 - `ROBOTSTXT_OBEY`: 是否遵守目标网站的 `robots.txt` 规则。 ```python # settings.py 示例 USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64)" DOWNLOAD_DELAY = 1 ROBOTSTXT_OBEY = True ``` #### 5. 运行爬虫 完成爬虫编写后,可以通过以下命令运行爬虫并保存结果: ```bash # 运行爬虫并将结果保存为 JSON 文件 scrapy crawl example -o output.json ``` #### 6. 数据存储与处理 Scrapy 支持多种数据输出格式(如 JSON、CSV、XML),并且可以通过管道(Pipelines)实现更复杂的数据处理逻辑。例如,将抓取的数据保存到数据库中: ```python # pipelines.py 示例 import sqlite3 class SQLitePipeline: def open_spider(self, spider): self.connection = sqlite3.connect("data.db") self.cursor = self.connection.cursor() self.cursor.execute(""" CREATE TABLE IF NOT EXISTS items ( title TEXT, link TEXT ) """) def close_spider(self, spider): self.connection.close() def process_item(self, item, spider): self.cursor.execute(""" INSERT INTO items (title, link) VALUES (?, ?) """, (item["title"], item["link"])) self.connection.commit() return item ``` 在 `settings.py` 中启用管道: ```python ITEM_PIPELINES = {"myproject.pipelines.SQLitePipeline": 300} ``` --- ### 注意事项 - 确保遵守目标网站的 `robots.txt` 文件规则,避免引发法律或道德问题。 - 对于动态内容加载的网站,可能需要结合 Selenium 或 Playwright 等工具处理 JavaScript 渲染。 - 调整爬取速度以避免对目标服务器造成过大的负载。 ---
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值