二叉堆

二叉堆

本文要说的不是堆栈的堆,而是数据结构中的堆。
堆又被称作为优先队列。队列是FIFO的数据结构,堆也可以看作是一种FIFO的数据结构,不同的是,堆可以被看作是有优先级的,比如小根堆,总是关键字最小的节点为队首。
思考一个问题:
一个打印机内部维护一个队列,把需要处理的文件都交给队列处理,那么可能现在出现一种情况是,先来的作业需要打印100张,后来的只需要打印一张,常理之下,我们可能会让打印1张的先进行打印,但是,队列是FIFO的,那么后来的那一张就会等待前面的100张打印完毕后才会开始打印。
堆就不一样了,可以维护一个小根堆,那么打印一张的作业就算后来,也会因此被首先打印。

堆是一颗完全二叉树,前n - 1层都是被填满的,n层的节点从左到右被填满。那么我们可以用一个数组来进行存储,而不是用链。

堆的插入

往堆中插入元素时,需要将元素插至该堆的最后一个节点,随后通过与父节点的关键字进行对比,进行percolate(上滤)操作。

现在有这么一个堆

这里写图片描述

现在要插入一个元素2,那么它应该是这样的

这里写图片描述

通过跟父元素关键字的对比,然后进行上滤操作

这里写图片描述

这里写图片描述

这样最关键字最小的元素就会浮动到最顶层。

下面来看一下具体实现(golang描述)

首先需要定义一个堆的结构体

type Heap struct {
    arr []int
}

//Heap构造函数
func NewHeap() *Heap{
    return &Heap{
        arr: make([]int, 0, 10),
    }
}

插入函数

//往堆中插入元素
func (h *Heap) insert(v int) bool{
    if len(h.arr) == 0 { 
        h.arr = append(h.arr, 0)
        h.arr = append(h.arr, v); 
        return true
    }
    //空穴位置
    var hole int
    //判断是否还有空间
    h.arr = append(h.arr, 0)
    hole = len(h.arr) - 1 
    fmt.Printf("evaluted  %d\n",hole)
    //上滤 percolate up
    for ; hole > 1 && h.arr[hole / 2] > v; hole /= 2 {
        h.arr[hole] = h.arr[hole / 2]
    }

    h.arr[hole] = v
    return true
}

可以借助插入函数来初始化一个堆

//初始化堆
func (h *Heap) init(vals...int){
    for _, v := range vals {
        h.insert(v)
    }
} 

执行

col := []int{13, 21, 16, 24, 31}
h := NewHeap()
h.init(col...)
h.insert(2)
fmt.Println(h.arr) //[0 2 21 13 24 31 16]

堆的删除

现在如果我们要删除一个堆顶节点呢?

很常见的一个方法是,将堆的最后一个元素提到删除的空位上来,然后将这个元素进行下滤操作。

比如现在将关键字为2的这个节点从堆中删除。
首先就得先将最后一个节点提到删除的空位上来

这里写图片描述

然后再进行下滤操作,跟子节点中最小的节点的关键字进行比较。

这里写图片描述

下面给出一个具体实现

//删除元素
func (h *Heap) deleteMin() bool{
    var ok bool
    if len(h.arr) == 0 { 
        return false 
    } else if len(h.arr) == 2 {
        h.arr, ok = sliceRemoveEle(h.arr, h.arr[1])
        if !ok {return false}
        return true
    }

    //删除最小元素
    h.arr[1] = h.arr[len(h.arr) - 1]
    h.arr = h.arr[:len(h.arr) - 1]
    //下滤 percolate down
    index := 1
    for index * 2 < len(h.arr) {
        var minNodeIndex int
        if index * 2 + 1 > len(h.arr) { 
            if h.arr[index * 2] < h.arr[index] {
                h.arr[index * 2], h.arr[index] = h.arr[index], h.arr[index * 2]
                index *= 2
                break
            }
        }


        if h.arr[index * 2] > h.arr[index * 2 + 1] {
            minNodeIndex = index * 2 + 1
        } else {
            minNodeIndex = index * 2
        }

        fmt.Println(h.arr[minNodeIndex], h.arr[index])

        if h.arr[minNodeIndex] < h.arr[index] {
            h.arr[minNodeIndex], h.arr[index] = h.arr[index], h.arr[minNodeIndex]
            index = minNodeIndex
        } else {
            break
        }

    }

    return true
}

执行

func main(){
    col := []int{13, 21, 16, 24, 31}
    h := NewHeap()
    h.init(col...)
    h.insert(2)
    h.deleteMin()
    fmt.Println(h.arr) //[0 13 21 16 24 31]
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值