题目:Adaptive Rectangular Convolution for Remote Sensing Pansharpening
会议:Conference on Computer Vision and Pattern Recognition 2025
论文:https://arxiv.org/abs/2503.00467
代码:https://github.com/WangXueyang-uestc/ARConv
年份:2025
单位:电子科技大学
图1。顶行:通过基于DL的方法进行遥感泛扫的综合流程图。最下面一行:我们的自适应矩形卷积(ARConv)的一个说明性例子,它有两个明显的优点:1)它的卷积核可以根据对象大小自适应地修改采样位置;2) 采样点的数量是在各种特征图上动态确定的,例如,实现5×3自适应矩形卷积,据我们所知,这是第一次尝试。
问题背景:
1、标准卷积的缺点:首先,它的采样位置固定在一个确定大小的方形窗口内,这限制了它变形的能力,从而阻止了它自适应地找到采样位置。其次,卷积核的采样点数量是预先确定的,这使得在不同尺度上自适应地捕获特征变得具有挑战性。
2、一些创新的卷积方法的缺点,没有考虑遥感图像中丰富的尺度信息。不能根据卷积核的形状调整采样点的数量,这进一步限制了它的性能。多尺度卷积虽能提取不同尺度信息,但卷积核大小固定,无法根据特征图内容自适应调整采样位置 。