TMI | 2025 癌症多模式生存分析中的群体-个体合作学习

问题背景

生存分析的重要性与挑战:癌症生存分析是癌症预后的重要任务,旨在评估患者事件发生概率并准确对患者风险排序,为疾病进展、治疗效果和患者预后提供参考。但癌症的复杂性要求综合评估多样化的个性化数据,这对生存分析模型有效捕捉和融合数据异质性提出了挑战。

深度学习在生存分析中的应用及问题:深度学习利用患者临床数据(如基因组学和病理图像)使生存分析更高效准确,减轻了临床医生的工作量。基于深度学习的多模态方法整合两种模态以获取互补信息,提升生存分析准确性。然而,数据的异质性差距问题未得到很好解决,影响多模态整合效果;数据的高维度增加了过拟合与任务无关信息的风险,导致模型在未见样本上性能下降。

多模态知识分解与泛化能力的需求:在多模态整合中,不同知识成分的重要性不同,如多模态共享的常识知识在整合中通常是冗余的,会干扰模型学习其他判别信息;多模态交互产生的协同知识若未显式建模可能被忽略。此外,从高维数据中提取判别特征并确保良好的泛化能力是一个艰巨的挑战,大量与任务无关的信息会在模态间产生虚假相关性,需要有效的解决方案来学习多模态交互并增强泛化能力。

研究方法

CCL 框架:提出 CCL 框架,用于整合基因组学和病理图像进行癌症生存分析。

多模态知识分解(MKD)模块:通过 MKD 模块将多模态知识全面且明确地分解为冗余、协同以及两种模态的独特性这四个不同的组成部分。这种分解使模型能够识别常被忽视但至关重要的信息,为有效的多模态融合铺平道路,增强不同数据模态及其互补信息的整合。

队列指导建模(CGM):提出 CGM,以释放不同知识成分的潜力并增强模型的泛化能力。队列指导在知识和患者层面辅助特征学习,在不同粒度水平上捕捉多方面数据的本质。通过与知识分解和队列指导的协同作用,在有效融合不同模态的同时降低过拟合风险,从而增强模型的判别能力和泛化能力。

研究贡献

MKD 模块创新:提出 MKD 模块,全面且明确地将多模态知识分解为不同组件,促进了异质数据的有效融合。

CGM 的优势:提出 CGM,通过减轻对与任务无关信息的过拟合,增强了模型的泛化能力和判别能力。

实验验证性能:在癌症基因组图谱(TCGA)项目的五个数据集上进行的大量实验结果证明,所提出的框架在生存分析中取得了领先的性能。

 

 

文字内容解释

  1. 病理图像的重要性及初步处理:全切片图像(WSIs)即病理图像,能描述肿瘤免疫微环境信息,为癌症预后预测提供有价值信息。由于 WSIs 分辨率极高,超出了卷积神经网络(CNNs)的处理能力,所以采用将每个 WSI 中的组织区域分割成不重叠的图像块的策略,这些图像块在 20 倍放大下,分辨率为 256×256 。然后,借鉴先前研究,使用在 ImageNet 上预训练的 ResNet - 50 模型为每个图像块提取 1024 维的嵌入特征,同一 WSI 的所有图像块嵌入特征被收集成一个嵌入集。
  2. 降维与聚类:由于每个 WSI 的嵌入集通常包含数万个图像块,维度仍然很高,存在信息冗余。因此使用 K - means 算法将所有图像块嵌入特征聚成 k 组,并将聚类中心作为病理特征。
  3. 聚类中心不对齐问题及解决方法:但 K - means 算法具有随机性,不同样本的聚类中心可能会出现不对齐的情况,即两个样本相同顺序位置的聚类中心可能表现出完全不同的表型。这会导致深度模型倾向于学习与表型无关的知识,而忽略重要图像块中的关键信息。为解决这个问题,采用聚类中心对齐(CCA)方法,也就是在一个锚点(anchor)和聚类中心之间进行最优匹配。具体是将每个聚类中心分配给锚点中与之相似度最大的特征,利用匈牙利算法计算置换矩阵,该矩阵将当前聚类中心映射到其匹配的顺序位置,然后将聚类中心与置换矩阵相乘得到对齐后的中心。在训练期间,以 τ 的比例用对齐后的中心更新锚点。

 

2) Cohort Guidance Modeling:

由于输入模态的高维度,从每个患者身上学习到的多模态交互,如现有方法[29]、[32]、[33]所做的那样,可能会过度拟合与任务无关的信息,导致泛化和辨别能力降低。

图 5:是队列指导的图形化说明。左侧表示知识层面,不同颜色和形状代表不同知识组件,如蓝色正方形代表基因组特有知识,紫色三角形代表病理特有知识等,通过 “Push” 操作表示对不同知识组件的约束和引导学习,使它们具有不同特征;右侧表示患者层面,不同颜色区域和形状代表不同患者组,在患者层面根据风险分数区分患者,以获取与任务相关信息,帮助提取更具判别性的表示。

  • 患者分组:根据患者的真实生存时间,将所有患者划分为r个相等的组,假定同一组内的患者具有相似的风险特征。对于未删失患者(即明确观察到发生关注事件,如死亡的患者),其特征应与同组相似风险患者的特征相近,与其他组患者特征有明显差异;对于删失患者(未观察到关注事件的患者,如失访或在研究期内未发生事件),其特征应更接近相似或低风险患者的特征,与高风险患者特征不同。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值