归一化输入(Normalizing inputs)
训练神经网络,其中一个加速训练的方法就是归一化输入。假设一个训练集有两个特征,输入特征为2维,归一化需要两个步骤:
1.零均值
2.归一化方差;
我们希望无论是训练集和测试集都是通过相同的μ和σ^2定义的数据转换,这两个是由训练集得出来的。
第一步是零均值化
它是一个向量,x等于每个训练数据 x减去μ,意思是移动训练集,直到它完成零均值化。
第二步是归一化方差,
注意特征x_1的方差比特征x_2的方差要大得多,我们要做的是给σ赋值
这是节点y 的平方,σ2是一个向量,它的每个特征都有方差,注意,我们已经完成零值均化,(x(i)2元素y2就是方差,我们把所有数据除以向量σ^2,最后变成上图形式。
x_1和x_2的方差都等于1。
提示一下,如果你用它来调整训练数据,那么用相同的 μ 和 σ^2来归一化测试集。
尤其是,你不希望训练集和测试集的归一化有所不同,不论μ的值是什么,也不论σ^2的值是什么,这两个公式中都会用到它们。所以你要用同样的方法调整测试集,而不是在训练集和测试集上分别预估μ 和 σ2。因为我们希望不论是训练数据还是测试数据,都是通过相同