吴恩达深度学习笔记(53)-Batch Norm 为什么奏效

本文探讨了Batch Norm为何能有效加速学习。一方面,Batch Norm通过归一化输入和隐藏层值,使特征值保持在相近范围内,从而加速学习。另一方面,它减少了由于数据分布变化(Covariate shift)导致的网络层间影响,使得网络各层能相对独立地学习,提升学习效率。此外,Batch Norm还具有轻微的正则化效果,类似dropout,但主要作用仍是加速学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Batch Norm 为什么奏效?(Why does Batch Norm work?)
为什么Batch归一化会起作用呢?

一个原因是,你已经看到如何归一化输入特征值x,使其均值为0,方差1.

它又是怎样加速学习的,有一些从0到1而不是从1到1000的特征值,通过归一化所有的输入特征值x,以获得类似范围的值,可以加速学习。

所以Batch归一化起的作用的原因,直观的一点就是,它在做类似的工作,但不仅仅对于这里的输入值,还有隐藏单元的值,这只是Batch归一化作用的冰山一角,还有些深层的原理,它会有助于你对Batch归一化的作用有更深的理解,让我们一起来看看吧。

Batch归一化有效的第二个原因是,它可以使权重比你的网络更滞后或更深层,比如,第10层的权重更能经受得住变化,相比于神经网络中前层的权重,比如第1层,为了解释我的意思,让我们来看看这个最生动形象的例子。

吴恩达深度学习笔记(53)-Batch Norm 为什么奏效
这是一个网络的训练,也许是个浅层网络,比如logistic回归或是一个神经网络,也许是个浅层网络,像这个回归函数。

或一个深层网络,建立在我们著名的猫脸识别检测上,但假设你已经在所有黑猫的图像上训练了数据集,如果现在你要把此网络应用于有色猫,这种情况下,正面的例子不只是左边的黑猫,还有右边其它颜色的猫&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值