Agentic AI 8 层架构的完整 Python 实现 每层作为独立类展示其核心功能和接口

Agentic AI 8 层架构的完整 Python 实现,每层作为独立类展示其核心功能和接口

import asyncio
import logging
import time
import json
from typing import Dict, Any, List, Optional, Callable, Union
from dataclasses import dataclass, field
from enum import Enum
import os
from datetime import datetime
import threading
import queue

# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("AgenticAI")

# =====================
# 1. 硬件层 (Hardware Layer)
# =====================
class HardwareLayer:
    """表示硬件层,管理物理资源"""
    
    def __init__(self):
        self.cpu_cores = os.cpu_count()
        self.total_memory = self._get_total_memory()
        self.gpu_info = self._detect_gpu()
        self.sensors = {}
        self.actuators = {}
        self.resource_usage = {
            "cpu": 0.0,
            "memory": 0.0,
            "gpu": 0.0
        }
        
    def _get_total_memory(self) -> float:
        """获取系统总内存(GB)"""
        try:
            with open('/proc/meminfo', 'r') as f:
                for line in f:
                    if line.startswith('MemTotal:'):
                        return float(line.split()[1]) / (1024 * 1024)  # GB
            return 8.0  # 默认8GB
        except:
            return 8.0  # 默认8GB
    
    def _detect_gpu(self) -> Dict[str, Any]:
        """检测GPU信息"""
        try:
            import torch
            if torch.cuda.is_available():
                return {
                    "available": True,
                    "count": torch.cuda.device_count(),
                    "name": torch.cuda.get_device_name(0)
                }
        except:
            pass
        return {"available": False}
    
    def register_sensor(self, sensor_id: str, sensor: Any) -> None:
        """注册传感器"""
        self.sensors[sensor_id] = sensor
        logger.info(f"注册传感器: {sensor_id}")
    
    def register_actuator(self, actuator_id: str, actuator: Any) -> None:
        """注册执行器"""
        self.actuators[actuator_id] = actuator
        logger.info(f"注册执行器: {actuator_id}")
    
    def get_sensor_data(self, sensor_id: str) -> Any:
        """获取传感器数据"""
        if sensor_id in self.sensors:
            return self.sensors[sensor_id].read()
        return None
    
    def control_actuator(self, actuator_id: str, command: Any) -> bool:
        """控制执行器"""
        if actuator_id in self.actuators:
            return self.actuators[actuator_id].execute(command)
        return False
    
    def get_resource_status(self) -> Dict[str, Any]:
        """获取资源状态"""
        # 更新资源使用情况
        self.resource_usage["cpu"] = self._get_cpu_usage()
        self.resource_usage["memory"] = self._get_memory_usage()
        if self.gpu_info["available"]:
            self.resource_usage["gpu"] = self._get_gpu_usage()
        
        return {
            "cpu": {
                "cores": self.cpu_cores,
                "usage_percent": self.resource_usage["cpu"]
            },
            "memory": {
                "total_gb": self.total_memory,
                "usage_percent": self.resource_usage["memory"]
            },
            "gpu": self.gpu_info
        }
    
    def _get_cpu_usage(self) -> float:
        """获取CPU使用率(简化版)"""
        try:
            import psutil
            return psutil.cpu_percent(interval=0.1)
        except:
            return 0.0
    
    def _get_memory_usage(self) -> float:
        """获取内存使用率(简化版)"""
        try:
            import psutil
            return psutil.virtual_memory().percent
        except:
            return 0.0
    
    def _get_gpu_usage(self) -> float:
        """获取GPU使用率(简化版)"""
        if not self.gpu_info["available"]:
            return 0.0
        
        try:
            import torch
            return torch.cuda.utilization(0)
        except:
            return 0.0

# =====================
# 2. 操作系统层 (OS Layer)
# =====================
class OSLayer:
    """表示操作系统层,管理进程和资源分配"""
    
    def __init__(self, hardware: HardwareLayer):
        self.hardware = hardware
        self.processes = {}
        self.threads = {}
        self.resource_manager = ResourceManager(hardware)
        
    def start_process(self, process_id: str, target: Callable, args: tuple = ()) -> bool:
        """启动新进程"""
        if process_id in self.processes:
            logger.warning(f"进程 {process_id} 已存在")
            return False
        
        # 分配资源
        resources = {"cpu": 10.0, "memory": 100.0}  # 默认10% CPU, 100MB内存
        if not self.resource_manager.allocate_resources(process_id, resources):
            logger.error(f"无法为进程 {process_id} 分配资源")
            return False
        
        # 启动进程
        process = threading.Thread(target=target, args=args)
        process.start()
        
        self.processes[process_id] = {
            "thread": process,
            "status": "running",
            "resources": resources
        }
        
        logger.info(f"启动进程: {process_id}")
        return True
    
    def stop_process(self, process_id: str) -> bool:
        """停止进程"""
        if process_id not in self.processes:
            logger.warning(f"进程 {process_id} 不存在")
            return False
        
        # 停止进程
        process_info = self.processes[process_id]
        process_info["status"] = "stopping"
        
        # 这里应该有更优雅的方式停止线程
        # 简化处理,实际应用中需要更复杂的机制
        process_info["thread"].join(timeout=1.0)
        
        # 释放资源
        self.resource_manager.release_resources(process_id)
        
        del self.processes[process_id]
        logger.info(f"停止进程: {process_id}")
        return True
    
    def monitor_process(self, process_id: str) -> Dict[str, Any]:
        """监控进程状态"""
        if process_id not in self.processes:
            return {"status": "not_found"}
        
        return {
            "status": self.processes[process_id]["status"],
            "resources": self.processes[process_id]["resources"],
            "system_resources": self.hardware.get_resource_status()
        }

class ResourceManager:
    """资源管理器,负责分配和跟踪资源使用"""
    
    def __init__(self, hardware: HardwareLayer):
        self.hardware = hardware
        self.resource_allocation = {}
    
    def allocate_resources(self, process_id: str, resources: Dict[str, float]) -> bool:
        """分配资源"""
        cpu_percent = resources.get("cpu", 0.0)
        memory_mb = resources.get("memory", 0.0)
        
        # 检查资源是否足够
        current_usage = self.hardware.get_resource_status()
        available_cpu = 100.0 - current_usage["cpu"]["usage_percent"]
        available_memory = (100.0 - current_usage["memory"]["usage_percent"]) * self.hardware.total_memory * 1024  # MB
        
        if cpu_percent > available_cpu or memory_mb > available_memory:
            logger.warning(f"资源不足: 需要 CPU {cpu_percent}%, 内存 {memory_mb}MB")
            return False
        
        # 分配资源
        self.resource_allocation[process_id] = resources
        logger.info(f"为进程 {process_id} 分配资源: CPU {cpu_percent}%, 内存 {memory_mb}MB")
        return True
    
    def release_resources(self, process_id: str) -> None:
        """释放资源"""
        if process_id in self.resource_allocation:
            resources = self.resource_allocation.pop(process_id)
            logger.info(f"为进程 {process_id} 释放资源: CPU {resources.get('cpu', 0.0)}%, 内存 {resources.get('memory', 0.0)}MB")

# =====================
# 3. 通信层 (Communication Layer)
# =====================
class CommunicationProtocol(Enum):
    HTTP = "http"
    HTTPS = "https"
    GRPC = "grpc"
    MQTT = "mqtt"
    WEBSOCKET = "websocket"

@dataclass
class Connection:
    target: str
    protocol: CommunicationProtocol
    status: str = "disconnected"
    connection: Any = None
    last_activity: float = 0.0

class CommunicationLayer:
    """表示通信层,处理内部和外部通信"""
    
    def __init__(self):
        self.connections = {}
        self.message_queue = queue.Queue()
        self.event_handlers = {
            "message_received": [],
            "connection_established": [],
            "connection_lost": []
        }
    
    async def connect(self, target: str, protocol: CommunicationProtocol = CommunicationProtocol.HTTP) -> bool:
        """建立与目标的连接"""
        if target in self.connections:
            if self.connections[target].status == "connected":
                logger.info(f"已连接到 {target}")
                return True
            
            # 关闭现有连接
            await self.disconnect(target)
        
        # 创建新连接
        connection = Connection(target=target, protocol=protocol)
        self.connections[target] = connection
        
        try:
            # 模拟连接过程
            logger.info(f"正在连接到 {target} 使用 {protocol.value}")
            await asyncio.sleep(0.5)
            
            connection.status = "connected"
            connection.last_activity = time.time()
            logger.info(f"成功连接到 {target}")
            
            # 触发连接建立事件
            self._trigger_event("connection_established", {"target": target, "protocol": protocol})
            
            return True
        except Exception as e:
            logger.error(f"连接失败: {target}, 错误: {str(e)}")
            return False
    
    async def disconnect(self, target: str) -> bool:
        """断开与目标的连接"""
        if target not in self.connections:
            logger.warning(f"未连接到 {target}")
            return False
        
        connection = self.connections[target]
        if connection.status == "disconnected":
            logger.info(f"已断开与 {target} 的连接")
            return True
        
        try:
            # 模拟断开连接过程
            logger.info(f"正在断开与 {target} 的连接")
            await asyncio.sleep(0.3)
            
            connection.status = "disconnected"
            connection.last_activity = time.time()
            logger.info(f"已断开与 {target} 的连接")
            
            # 触发连接丢失事件
            self._trigger_event("connection_lost", {"target": target})
            
            return True
        except Exception as e:
            logger.error(f"断开连接失败: {target}, 错误: {str(e)}")
            return False
    
    async def send(self, target: str, message: Dict[str, Any]) -> Dict[str, Any]:
        """发送消息到目标"""
        if target not in self.connections or self.connections[target].status != "connected":
            success = await self.connect(target)
            if not success:
                raise ConnectionError(f"无法连接到 {target}")
        
        connection = self.connections[target]
        
        try:
            # 模拟消息发送
            logger.info(f"向 {target} 发送消息: {json.dumps(message)[:50]}...")
            await asyncio.sleep(0.3)
            
            # 更新活动时间
            connection.last_activity = time.time()
            
            # 返回模拟响应
            response = {
                "status": "success",
                "timestamp": datetime.now().isoformat(),
                "data": {"response": f"处理了来自 {message.get('sender', 'unknown')} 的请求"}
            }
            
            return response
        except Exception as e:
            logger.error(f"发送消息失败: {target}, 错误: {str(e)}")
            raise
    
    async def receive(self, timeout: float = None) -> Optional[Dict[str, Any]]:
        """接收消息"""
        try:
            if timeout is None:
                message = self.message_queue.get(block=False)
            else:
                message = self.message_queue.get(block=True, timeout=timeout)
            
            return message
        except queue.Empty:
            return None
    
    def register_event_handler(self, event_type: str, handler: Callable) -> None:
        """注册事件处理器"""
        if event_type in self.event_handlers:
            self.event_handlers[event_type].append(handler)
            logger.info(f"注册事件处理器: {event_type}")
    
    def _trigger_event(self, event_type: str, data: Dict[str, Any]) -> None:
        """触发事件"""
        if event_type in self.event_handlers:
            for handler in self.event_handlers[event_type]:
                try:
                    handler(data)
                except Exception as e:
                    logger.error(f"事件处理器执行失败: {event_type}, 错误: {str(e)}")

# =====================
# 4. 数据层 (Data Layer)
# =====================
class DataSourceType(Enum):
    KNOWLEDGE_BASE = "knowledge_base"
    SHORT_TERM_MEMORY = "short_term_memory"
    LONG_TERM_MEMORY = "long_term_memory"
    DATA_STREAM = "data_stream"

class DataLayer:
    """表示数据层,管理各种数据存储和检索"""
    
    def __init__(self):
        self.data_sources = {
            DataSourceType.KNOWLEDGE_BASE: {},
            DataSourceType.SHORT_TERM_MEMORY: {},
            DataSourceType.LONG_TERM_MEMORY: {},
            DataSourceType.DATA_STREAM: []
        }
    
    def add_data(self, source_type: DataSourceType, key: str, value: Any) -> None:
        """添加数据到指定数据源"""
        if source_type == DataSourceType.DATA_STREAM:
            self.data_sources[source_type].append({
                "timestamp": time.time(),
                "key": key,
                "value": value
            })
            # 限制数据流大小
            if len(self.data_sources[source_type]) > 1000:
                self.data_sources[source_type].pop(0)
        else:
            self.data_sources[source_type][key] = value
        
        logger.info(f"添加数据到 {source_type.value}: {key}")
    
    def get_data(self, source_type: DataSourceType, key: Optional[str] = None) -> Any:
        """从指定数据源获取数据"""
        if source_type == DataSourceType.DATA_STREAM:
            if key is None:
                return self.data_sources[source_type]
            else:
                # 查找最近的具有指定key的数据流项
                for item in reversed(self.data_sources[source_type]):
                    if item["key"] == key:
                        return item["value"]
                return None
        else:
            if key is None:
                return self.data_sources[source_type]
            else:
                return self.data_sources[source_type].get(key)
    
    def update_data(self, source_type: DataSourceType, key: str, value: Any) -> bool:
        """更新指定数据源中的数据"""
        if source_type == DataSourceType.DATA_STREAM:
            # 无法直接更新数据流中的特定项
            logger.warning(f"无法直接更新数据流中的特定项: {key}")
            return False
        
        if key in self.data_sources[source_type]:
            self.data_sources[source_type][key] = value
            logger.info(f"更新数据在 {source_type.value}: {key}")
            return True
        
        logger.warning(f"数据不存在,无法更新: {source_type.value}, {key}")
        return False
    
    def delete_data(self, source_type: DataSourceType, key: str) -> bool:
        """从指定数据源删除数据"""
        if source_type == DataSourceType.DATA_STREAM:
            # 无法直接删除数据流中的特定项
            logger.warning(f"无法直接删除数据流中的特定项: {key}")
            return False
        
        if key in self.data_sources[source_type]:
            del self.data_sources[source_type][key]
            logger.info(f"删除数据从 {source_type.value}: {key}")
            return True
        
        logger.warning(f"数据不存在,无法删除: {source_type.value}, {key}")
        return False

# =====================
# 5. 模型层 (Model Layer)
# =====================
@dataclass
class Model:
    model_id: str
    model_type: str
    status: str = "unloaded"
    instance: Any = None
    resources: Dict[str, float] = field(default_factory=dict)

class ModelLayer:
    """表示模型层,管理AI模型"""
    
    def __init__(self, os_layer: OSLayer):
        self.os_layer = os_layer
        self.models = {}
        self.model_registry = {
            "llm": self._load_llm_model,
            "vision": self._load_vision_model,
            "audio": self._load_audio_model,
            "decision_tree": self._load_decision_tree_model
        }
    
    async def load_model(self, model_id: str, model_type: str, model_path: str = None) -> bool:
        """加载模型"""
        if model_id in self.models:
            if self.models[model_id].status == "loaded":
                logger.info(f"模型 {model_id} 已加载")
                return True
            
            # 卸载现有模型
            await self.unload_model(model_id)
        
        # 创建模型实例
        model = Model(model_id=model_id, model_type=model_type)
        self.models[model_id] = model
        
        try:
            # 根据模型类型选择加载方法
            if model_type in self.model_registry:
                loader = self.model_registry[model_type]
                success = await loader(model_id, model_path)
                if success:
                    model.status = "loaded"
                    logger.info(f"模型 {model_id} 加载成功")
                    return True
            else:
                logger.error(f"未知模型类型: {model_type}")
            
            return False
        except Exception as e:
            logger.error(f"加载模型失败: {model_id}, 错误: {str(e)}")
            return False
    
    async def unload_model(self, model_id: str) -> bool:
        """卸载模型"""
        if model_id not in self.models:
            logger.warning(f"模型 {model_id} 未加载")
            return False
        
        model = self.models[model_id]
        
        try:
            # 释放模型占用的资源
            if model.resources:
                self.os_layer.resource_manager.release_resources(model_id)
            
            model.status = "unloaded"
            model.instance = None
            logger.info(f"模型 {model_id} 卸载成功")
            return True
        except Exception as e:
            logger.error(f"卸载模型失败: {model_id}, 错误: {str(e)}")
            return False
    
    async def inference(self, model_id: str, input_data: Any) -> Any:
        """使用模型进行推理"""
        if model_id not in self.models or self.models[model_id].status != "loaded":
            raise ValueError(f"模型 {model_id} 未加载")
        
        model = self.models[model_id]
        
        try:
            logger.info(f"使用模型 {model_id} 进行推理")
            
            # 根据模型类型执行不同的推理逻辑
            if model.model_type == "llm":
                return await self._llm_inference(model_id, input_data)
            elif model.model_type == "vision":
                return await self._vision_inference(model_id, input_data)
            elif model.model_type == "audio":
                return await self._audio_inference(model_id, input_data)
            elif model.model_type == "decision_tree":
                return await self._decision_tree_inference(model_id, input_data)
            else:
                raise ValueError(f"不支持的模型类型: {model.model_type}")
        except Exception as e:
            logger.error(f"推理失败: {model_id}, 错误: {str(e)}")
            raise
    
    async def _load_llm_model(self, model_id: str, model_path: str) -> bool:
        """加载大语言模型"""
        # 分配资源
        resources = {"cpu": 20.0, "memory": 2048.0}  # 20% CPU, 2GB内存
        if not self.os_layer.resource_manager.allocate_resources(model_id, resources):
            logger.error(f"无法为模型 {model_id} 分配资源")
            return False
        
        self.models[model_id].resources = resources
        
        # 模拟模型加载
        logger.info(f"正在加载LLM模型: {model_id}")
        await asyncio.sleep(2.0)
        
        # 在实际应用中,这里会真正加载LLM模型
        self.models[model_id].instance = {"type": "llm", "id": model_id}
        return True
    
    # 其他模型加载和推理方法...
    async def _load_vision_model(self, model_id: str, model_path: str) -> bool:
        # 类似LLM模型加载逻辑
        resources = {"cpu": 15.0, "memory": 1536.0, "gpu": 30.0}  # 15% CPU, 1.5GB内存, 30% GPU
        if not self.os_layer.resource_manager.allocate_resources(model_id, resources):
            logger.error(f"无法为模型 {model_id} 分配资源")
            return False
        
        self.models[model_id].resources = resources
        logger.info(f"正在加载视觉模型: {model_id}")
        await asyncio.sleep(1.5)
        self.models[model_id].instance = {"type": "vision", "id": model_id}
        return True
    
    async def _load_audio_model(self, model_id: str, model_path: str) -> bool:
        # 类似LLM模型加载逻辑
        resources = {"cpu": 10.0, "memory": 1024.0}  # 10% CPU, 1GB内存
        if not self.os_layer.resource_manager.allocate_resources(model_id, resources):
            logger.error(f"无法为模型 {model_id} 分配资源")
            return False
        
        self.models[model_id].resources = resources
        logger.info(f"正在加载音频模型: {model_id}")
        await asyncio.sleep(1.2)
        self.models[model_id].instance = {"type": "audio", "id": model_id}
        return True
    
    async def _load_decision_tree_model(self, model_id: str, model_path: str) -> bool:
        # 类似LLM模型加载逻辑
        resources = {"cpu": 5.0, "memory": 512.0}  # 5% CPU, 512MB内存
        if not self.os_layer.resource_manager.allocate_resources(model_id, resources):
            logger.error(f"无法为模型 {model_id} 分配资源")
            return False
        
        self.models[model_id].resources = resources
        logger.info(f"正在加载决策树模型: {model_id}")
        await asyncio.sleep(0.8)
        self.models[model_id].instance = {"type": "decision_tree", "id": model_id}
        return True
    
    async def _llm_inference(self, model_id: str, input_data: Any) -> Any:
        # 模拟LLM推理
        await asyncio.sleep(0.5)
        return {
            "model_id": model_id,
            "output": f"LLM处理结果: {str(input_data)[:50]}..."
        }
    
    async def _vision_inference(self, model_id: str, input_data: Any) -> Any:
        # 模拟视觉模型推理
        await asyncio.sleep(0.7)
        return {
            "model_id": model_id,
            "output": f"视觉模型处理结果: {str(input_data)[:50]}..."
        }
    
    async def _audio_inference(self, model_id: str, input_data: Any) -> Any:
        # 模拟音频模型推理
        await asyncio.sleep(0.6)
        return {
            "model_id": model_id,
            "output": f"音频模型处理结果: {str(input_data)[:50]}..."
        }
    
    async def _decision_tree_inference(self, model_id: str, input_data: Any) -> Any:
        # 模拟决策树推理
        await asyncio.sleep(0.3)
        return {
            "model_id": model_id,
            "output": f"决策树处理结果: {str(input_data)[:50]}..."
        }

# =====================
# 6. 推理层 (Reasoning Layer)
# =====================
class ReasoningLayer:
    """表示推理层,实现逻辑推理和问题解决"""
    
    def __init__(self, model_layer: ModelLayer, data_layer: DataLayer):
        self.model_layer = model_layer
        self.data_layer = data_layer
        self.reasoning_models = ["llm", "decision_tree"]
    
    async def initialize(self) -> None:
        """初始化推理层"""
        # 加载必要的模型
        for model_id in self.reasoning_models:
            await self.model_layer.load_model(
                model_id, 
                model_id, 
                f"models/{model_id}.pt"
            )
    
    async def reason(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """基于输入进行推理"""
        # 将输入添加到短期记忆
        self.data_layer.add_data(
            DataSourceType.SHORT_TERM_MEMORY, 
            "current_input", 
            input_data
        )
        
        # 使用LLM进行理解
        llm_result = await self.model_layer.inference("llm", {
            "task": "understand",
            "input": input_data
        })
        
        # 从知识库获取相关知识
        relevant_knowledge = self.data_layer.get_data(
            DataSourceType.KNOWLEDGE_BASE,
            "relevant_knowledge"
        )
        
        # 使用决策树进行决策
        decision_input = {
            "context": llm_result["output"],
            "knowledge": relevant_knowledge,
            "input": input_data
        }
        decision_result = await self.model_layer.inference("decision_tree", decision_input)
        
        # 构建推理结果
        reasoning_output = {
            "input": input_data,
            "understanding": llm_result["output"],
            "knowledge": relevant_knowledge,
            "decision": decision_result["output"],
            "timestamp": datetime.now().isoformat()
        }
        
        # 保存推理结果到长期记忆
        self.data_layer.add_data(
            DataSourceType.LONG_TERM_MEMORY, 
            f"reasoning_{time.time()}", 
            reasoning_output
        )
        
        return reasoning_output

# =====================
# 7. 规划层 (Planning Layer)
# =====================
class GoalStatus(Enum):
    PENDING = "pending"
    IN_PROGRESS = "in_progress"
    COMPLETED = "completed"
    FAILED = "failed"

@dataclass
class Goal:
    goal_id: str
    description: Dict[str, Any]
    status: GoalStatus = GoalStatus.PENDING
    created_at: float = field(default_factory=time.time)
    updated_at: float = field(default_factory=time.time)
    subgoals: List["Goal"] = field(default_factory=list)
    plan: List[Dict[str, Any]] = field(default_factory=list)
    dependencies: List[str] = field(default_factory=list)
    priority: int = 1

class PlanningLayer:
    """表示规划层,负责目标设定和行动计划生成"""
    
    def __init__(self, reasoning_layer: ReasoningLayer):
        self.reasoning_layer = reasoning_layer
        self.goals = {}
        self.action_queue = queue.PriorityQueue()
    
    async def add_goal(self, description: Dict[str, Any], priority: int = 1) -> str:
        """添加新目标"""
        goal_id = f"goal_{int(time.time() * 1000)}"
        goal = Goal(
            goal_id=goal_id,
            description=description,
            priority=priority
        )
        
        self.goals[goal_id] = goal
        logger.info(f"添加新目标: {goal_id}, {json.dumps(description)[:50]}...")
        
        # 生成实现目标的计划
        await self._generate_plan(goal_id)
        
        return goal_id
    
    async def update_goal(self, goal_id: str, updates: Dict[str, Any]) -> bool:
        """更新目标"""
        if goal_id not in self.goals:
            logger.warning(f"目标 {goal_id} 不存在")
            return False
        
        goal = self.goals[goal_id]
        
        # 更新允许的字段
        if "description" in updates:
            goal.description = updates["description"]
        if "status" in updates:
            goal.status = GoalStatus(updates["status"])
        if "priority" in updates:
            goal.priority = updates["priority"]
        
        goal.updated_at = time.time()
        logger.info(f"更新目标: {goal_id}")
        
        return True
    
    async def get_next_action(self) -> Optional[Dict[str, Any]]:
        """获取下一个要执行的动作"""
        if self.action_queue.empty():
            return None
        
        # 获取最高优先级的动作
        _, action = self.action_queue.get()
        return action
    
    async def _generate_plan(self, goal_id: str) -> None:
        """为目标生成行动计划"""
        goal = self.goals[goal_id]
        
        # 使用推理层生成计划
        reasoning_input = {
            "task": "plan_generation",
            "goal": goal.description
        }
        
        reasoning_result = await self.reasoning_layer.reason(reasoning_input)
        plan = reasoning_result.get("decision", {}).get("plan", [])
        
        # 存储生成的计划
        goal.plan = plan
        goal.status = GoalStatus.IN_PROGRESS
        
        # 将动作添加到执行队列
        for action in plan:
            self.action_queue.put((-goal.priority, action))
        
        logger.info(f"为目标 {goal_id} 生成计划: {len(plan)} 个动作")

# =====================
# 8. 交互层 (Interaction Layer)
# =====================
class InteractionLayer:
    """表示交互层,处理与用户和环境的交互"""
    
    def __init__(
        self, 
        communication_layer: CommunicationLayer,
        planning_layer: PlanningLayer,
        data_layer: DataLayer
    ):
        self.communication_layer = communication_layer
        self.planning_layer = planning_layer
        self.data_layer = data_layer
        self.user_sessions = {}
        self.response_generators = {
            "text": self._generate_text_response,
            "image": self._generate_image_response,
            "action": self._generate_action_response
        }
    
    async def process_user_input(self, user_id: str, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """处理用户输入"""
        # 记录用户输入到数据流
        self.data_layer.add_data(
            DataSourceType.DATA_STREAM,
            f"user_input_{user_id}",
            input_data
        )
        
        # 检查用户会话
        if user_id not in self.user_sessions:
            self.user_sessions[user_id] = {
                "session_id": f"session_{int(time.time() * 1000)}",
                "created_at": time.time(),
                "history": []
            }
        
        session = self.user_sessions[user_id]
        session["history"].append({"type": "input", "data": input_data, "timestamp": time.time()})
        
        # 理解用户意图
        intent = await self._understand_user_intent(user_id, input_data)
        
        # 根据意图生成响应
        response_type = intent.get("response_type", "text")
        if response_type in self.response_generators:
            generator = self.response_generators[response_type]
            response = await generator(user_id, intent)
        else:
            response = {
                "type": "text",
                "content": f"抱歉,我不理解您的请求类型: {response_type}"
            }
        
        # 记录响应到会话历史
        session["history"].append({"type": "response", "data": response, "timestamp": time.time()})
        
        return response
    
    async def _understand_user_intent(self, user_id: str, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """理解用户意图"""
        # 使用推理层理解用户意图
        reasoning_input = {
            "task": "intent_recognition",
            "user_id": user_id,
            "input": input_data,
            "context": self.user_sessions[user_id]["history"]
        }
        
        reasoning_result = await self.reasoning_layer.reason(reasoning_input)
        intent = reasoning_result.get("decision", {}).get("intent", {})
        
        # 如果识别出需要设定目标,添加到规划层
        if "goal" in intent:
            goal_id = await self.planning_layer.add_goal(intent["goal"])
            intent["goal_id"] = goal_id
        
        return intent
    
    async def _generate_text_response(self, user_id: str, intent: Dict[str, Any]) -> Dict[str, Any]:
        """生成文本响应"""
        # 使用LLM生成文本响应
        response = await self.model_layer.inference("llm", {
            "task": "response_generation",
            "intent": intent,
            "context": self.user_sessions[user_id]["history"]
        })
        
        return {
            "type": "text",
            "content": response["output"]
        }
    
    async def _generate_image_response(self, user_id: str, intent: Dict[str, Any]) -> Dict[str, Any]:
        """生成图像响应"""
        # 使用视觉模型生成图像响应
        response = await self.model_layer.inference("vision", {
            "task": "image_generation",
            "prompt": intent.get("prompt", "默认图像")
        })
        
        return {
            "type": "image",
            "url": f"generated_images/{response['output']['image_id']}.jpg"
        }
    
    async def _generate_action_response(self, user_id: str, intent: Dict[str, Any]) -> Dict[str, Any]:
        """生成动作响应"""
        # 从规划层获取下一个动作
        action = await self.planning_layer.get_next_action()
        
        if action:
            # 执行动作
            result = await self._execute_action(user_id, action)
            
            return {
                "type": "action",
                "action": action,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金牌架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值