故障分类论文阅读笔记

一、基于变式模态分解和宽+窄视场神经网络的齿轮故障诊断

一、SCI-2 Gear Fault Diagnosis Based on Variational Modal Decomposition and Wide+Narrow Visual Field Neural Networks

摘为了科学高效地检测故障,本研究提出了一种基于变模态分解(VMD)和宽+窄视场神经网络(WNVNN)的齿轮故障诊断方法,即 VMD-WNVNN。VMD-WNVNN 包括两个阶段。在特征提取阶段,使用 VMD 和皮尔逊相关系数对原始数据进行分解和重构,以获得这些数据在频域上的特征。在分类阶段,使用 WNVNN 根据特征对数据进行分类。齿轮故障诊断实验的最终结果表明,与最近提出的其他方法相比,该方法不仅具有更高的分类准确性,而且具有更高的分类稳定性。

2019 年,Jiang 等人[32]设计了一种新的网络结构–多尺度 CNN(MSCNN),并将其应用于故障诊断领域。Konget 等[33]提出了一种注意力循环自动编码混合模型的分类方法,以解决传统深度学习在处理故障诊断数据时无法找到最佳特征的问题,该方法能有效地提取数据的最佳特征,并以较高的精度进行诊断。 Zhengetal.[34]提出了一种将诊断前置知识与深层网络模型相结合的方案,并通过与其他数据驱动方法的比较验证了该方案的性能。 Lietal. [Konget等人[33]提出了一种基于注意递归自动编码器(AE)混合模型分类的故障诊断算法,该算法能准确地从齿轮振动信号中提取特征并进行分类。Ruan 等人[36]针对传统深度学习方法需要大量数据进行训练的缺点,提出了一种基于关系的半监督故障诊断方法。 实验证明,在数据较少的情况下,该方法可以获得更好的训练效果和更高的分类精度

创新点:本文有两个领域的创新。 1) 在 CNN 和 GRU 的基础上提出了一种新的网络结构,称为 WNVNN。这种方法不仅结合了 CNN 和GRU 的优点,还采用了双尺度 CNN 网络以获取多特征。因此,与传统 CNN 相比,WNVNN 不仅具有更强大的数据特征挖掘能力,还具有更强的数据处理能力。 2) 提出了一种新颖的 VMD 与皮尔逊相关系数的组合,可以有效地提取齿轮的故障特征。与其他使用相关系数来筛选和重新构建 IMF 组件的特征提取方法相比,该方法能有效地提取齿轮故障特征。与 VMD 相比,该方法只需提取相关系数最大的两个 IMF 分量进行特征重建。

用到的方法

1 VMD-变分模态分解

VariationalModalDecomposition变分模态分解 VMD 是 Dragomiretskiy 和 Zosso [37] 在 2014 年提出的一种经过洗礼的分解理论。与经验模态分解(EMD)[38]不同,VMD将IMF定义为一种FM-AM信号uk(t),约束条件变化问题可表达如下:

VMD 首先确定分解的次数,当知道这个次数后,信号分解问题就转化为变分框架中受约束变分模型的最优解。 假设原始信号 f 由 K 个 IMFcom 部件组成,我们可以将受限变分问题表达如下:

VMD分解方式是利用迭代搜索变分模型最优解来确定每个分解的分量中心频率及带宽,属于完全非递归模型,该模型寻找模态分量的集合及其各自的中心频率,而每个模态在解调成基带之后是平滑的,Konstantin Dragomiretskiy通过实验结果证明:对于采样和噪声方面,该方法更具有鲁棒性。就是把非周期信号进行频域分析,把复杂信号分解成为多个谐波信号
————————————————

                        版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/ARM_qiao/article/details/108482727

模态分解认为信号是由不同“模态”的子信号叠加而成的,而变分模态分解则认为信号是由不同频率占优的子信号叠加而成的,其目的是要把信号分解成不同频率的子信号。

2.CNN网络

3.GRU

GRU是Choetal[43]提出的一种网络工作模型,其性能与LSTM相似,但所需参数少于LSTM[44]。 GRU 的工作流程如下。 1) 更新门控根据之前的状态 ht-1 和当前的输入xt 计算其输出zt

根据 zt,接下来的任务是确定上一时刻的状态 ht-1 和当前记忆状态 ht 中的哪些信息可以保留,以获得最终状态 ht 和当前时刻的输出 yt。

在这里插入图片描述

考虑到原始信号的时域和频域数据都会受到较大的噪声干扰,当齿轮故障轻微或故障性质不明显时,故障信息很容易被噪声信息淹没。这就使得神经网络模型无法做出准确的分类,分类模型也无法达到较高的分类精度。针对这些情况,本文提出了一种将特征提取与基于神经网络的分类器相结合的方案,如图 3 所示。

A. 特征提取

虽然不同故障齿轮的时域信号差异不大,但频域信号却有显著差异,如图 4 所示。因此,如何有效提取振动信号的频域特征是本文的重点研究内容之一。虽然不同故障齿轮的频域信号差异会比较明显,但频域数据也会受到很多噪声干扰。 因此,为了更准确地提取齿轮信号中的分量,我们首先利用 VMD 对原始信号进行分解,得到各频段的分量。 在进行分解之前,有必要确定分解数 K 的值。当 K 值过小时,原始信号中的一些信息会被滤除;当 K 值过大时,相邻模态的中心频率会过于接近,从而出现频率混叠现象 [45]。本文采用观察各模态中心频率的方法来确定 K 值。以电机旋转频率为 6 Hz、负载电压为 3V 的工况下根部裂纹故障齿轮的振动信号为例,不同 K 值下各模态的中心频率信息如表 I 所示。当 K 为 6 时,IMF5 和 IMF6 的中心频率分别为 3930 和 4094 Hz。如图 5 所示,IMF5 和 IMF6 的中心频率过于接近,导致非常严重的模式混合效应。因此,此时的分解数 K 值应设置为 5。

在这里插入图片描述
为了更准确地提取原始信号的主要分量,需要一个指标来衡量分解后各模态分量与原始信号的相关程度,而皮尔逊相关系数具有描述两个随机变量之间相关性的能力[46],[47]。因此,利用各分量相对于原始信号的皮尔逊相关系数的大小来确定原始信号的主要分量,然后利用皮尔逊相关系数的相似性来衡量两个信号形状的相似性。给定两个信号 X 和 Y(其中 X ={X1,X2,…,Xn},Y ={Y1,Y2,…,Yn})。

在保留相关系数最大的 IMF 分量的前提下,可以找到其他 IMF 分量中相关系数最大的 IMF 分量来表现振动信号的特征。因此,本文提出了一种特征提取方法,选择相关系数最大的两个 IMF 分量进行特征重构。从表二可以看出,相关系数最大的两个分量是 IMF2 和 IMF3,因此采用这两个分量对信号进行重构。重建信号与原始信号的皮尔逊相关系数为 0.84。根据皮尔逊相关系数的理论,当相关系数达到 0.6 时,两个信号被认为具有很强的相关性。因此,重构后的信号可以清晰地显示原始信号的特征。

B. 分类模型–WNVNN

1) 特征学习
利用上述方法,可以在频域中提取各种条件下齿轮的特征图。在这些特征图中,有些非常相似,如图 8(a)和©,有些则大相径庭,如图 8(b)和(d)。因此,如果分类模型能利用宽视野获得全局信息,利用窄视野获得细节信息,就能更深入地挖掘数据特征,做出更准确的分类。在此基础上,我们在本实验中使用了 WNVNN,其结构如图 3 中的特征学习部分所示。 WNVNN 的特征学习部分由宽域和窄域特征提取通道组成。它们是两个独立的特征提取网络。最后,两个通道输出的特征向量将被拼接并输入 GRU 进行学习和分类。这两个通道的区别主要在于卷积层中卷积核的大小。**广视角通道共有两个卷积层。为了从输入数据的更大区域获取特征信息,**第一个卷积层的卷积核设计得非常宽。该卷积核的大小为 1 × 640,该层有 32 个卷积核,跨距为 2。
另一个通道共有三个卷积层。为了获取输入数据的详细信息,通道第一卷积层的卷积核设计得较窄。第二层和第三层的卷积核大小均为 1×3,跨距为 2。经过三个卷积层和池化层的处理后,可以得到该通道安的最终输出。该网络中所有池化层的参数都是相同的。池化核的大小为 1×2,步长为 2。所有层添加了 L2 正则化项 λ = 0.0001。所有卷积层的填充参数设置相同,所有池化层的填充参数设置有效。为了提高网络的泛化能力,使用 ReLU 函数作为网络的激活函数。 为了进一步提高网络的泛化能力和训练效率,未经过卷积层激活函数处理的数据将被批量归一化。
2) 分类
由于数据是以频域有序序列输入的,因此经过 CNN 压缩和降维后得到的数据仍然是有序序列[48]。众所周知,与其他网络相比,递归神经网络(RNN)非常擅长处理这种有序序列,在其基础上开发的 LSTM 和 GRU 更是如此。GRU 不仅在性能上接近 LSTM,而且计算成本也低于 LSTM。因此,本文
将 GRU 网络引入到 WNVNN 结构中
。GRU 的输出空间维度为 32,该层输入单元的 dropout 参数为 0.5,递归单元的 dropout 参数为 0.5。然后,输出层可以根据 GRU 的输出对齿轮故障进行分类。由于这是一个多类别实验,输出层使用 softmax 函数计算每个类别的概率,并将概率最高的类别作为最终输出。 由于实验中使用的齿轮有五种不同的状态,因此输出层的神经元数量设置为 5。 输出层添加了 L2 正则化项 λ = 0.0001

IV. 实验与分析
A. 实验平台
所有实验均在 SpectraQuest 生产的实验平台上的风力涡轮机传动系统诊断模拟器上进行,其主要技术信息如表 III 所示。图 9 显示了实验平台的结构,共有五个部分。图中标有 1 的部分是单相电机,为平台提供动力;标有 2 的部分是振动传感器,用于收集变速箱的振动信号。图中标有 3 的部分是平行轴齿轮箱。在收集不同故障齿轮的振动数据时,必须将相应的齿轮置于该齿轮箱中。图中标有 4 的部分是带有四个行星齿轮的行星齿轮箱,而标有 5 的部分则是齿轮箱的负载制动器。整个系统可以通过行星齿轮箱调整齿轮的工作条件。 在实验过程中,将不同类型的齿轮装入平行轴齿轮箱,由计算机设定电机的具体载荷和旋转频率,然后通过齿轮箱上的振动传感器采集振动数据。如图 10 所示,共有五种不同健康状况的齿轮,即正常、崩齿、齿裂、缺齿和表面磨损。

B. 实验数据
为了模拟齿轮在风力涡轮机传动系统的各种条件下的运行情况,可以调整实验平台的负载和电机的旋转频率。实验中有三种不同的电机旋转频率。每种电机旋转频率有三种不同的负载。实验中共模拟了九种工作条件,其参数如表四所示。 在本实验中,每个工作环境下每个健康齿轮的数据点数为 32768 个,对应的采样频率为 5120 Hz,采样时间为 6.4 s。通过重叠采样法,每个工况下每个健康齿轮的训练集和测试集样本分别扩展为 100 个和 10 个、每个样本分别有 2048 个数据。在实验中,首先将对这些样本进行特征提取。对每个样本中的 2048 个时域数据进行特征提取后,将特征数据从时域数据转换为频域数据,然后将数据输入 WNVNN 进行处理。由于每个医疗设备有九种不同的工作环境,因此每个医疗设备有 900 个训练样本和 90 个测试样本。

  • 卷积核大小对分类精度的影响
  • CNN深度对精度的影响
    由于宽通道网络在分类过程中起主要作用,因此我们设置了两组实验,一组是有两层的宽通道网络,另一组是有三层、没有窄通道参与的宽通道网络。当深度为 2 时,输出数据的长度为 32。根据宽通道网络的设计思路,只将第三层卷积层的卷积核大小参数设置为 32,其他参数与第二层相同

二、sci-3 Degradation State Partition and Compound Fault Diagnosis of Rolling Bearing Based on Personalized Multilabel Learning

二、基于个性化多标签学习的滚动轴承退化状态划分与复合故障诊断

摘要 滚动轴承的预报和健康管理(PHM)一直是一个热门研究领域。由于轴承在退化过程中不可避免地会出现故障,因此如何根据退化状态和故障类型提高 PHM 性能仍是一个有待解决的问题。本研究针对滚动轴承的 PHM 提出了两种多标签学习算法,分别称为个性化二元相关性(PBR)和分层多标签 K-nearest neighbor(HML-KNN)。退化状态和故障类型被用作轴承数据的标签,因此每个样本都有相应的标签序列,也就是说,PHM 问题被转换为多标签学习问题。这两种算法都有一个个性化搜索过程,不仅可以帮助样本建立个性化模型,提高分类精度,还能解决标签间数据不平衡的问题。同时,两种算法也各有特点,侧重的应用场景也不尽相同。PBR 算法建模速度更快,使用更灵活,子分类器可替换。 HML-KNN 是一种高阶算法,通过对数据的分层处理和标签信息的转换,具有全局信息分析能力。这两种方法在 XJTU-SY 轴承数据集中都取得了足够好的结果。 为了说明算法的实用性,实验部分进一步增加了以下内容

轴承由内圈、外圈、保持架和滚珠四部分组成。

故障诊断旨在检查系统的异常情况 [22]-[27]。现有的大多数研究都检查了单故障情况,即系统在同一时间只包含一种故障类型。实际情况则更为复杂,因为可能涉及一种或多种类型的故障。因此,复合故障诊断是一个更为实际和紧迫的问题 [28],[29]。

1)解决数据不平衡问题。本文提出了两种改进的标签学习算法,即 PBR 和 HML-KNN。这两种算法都有一个个性化的搜索过程,不仅能帮助样本建立个性化模型,提高分类准确率,还能解决标签间的数据不平衡问题。
2) 两种算法各有优势。PBR 算法建模速度快,灵活性高,子分类器可替换。HML-KNN 是一种高阶算法,通过对数据的分层处理和标签信息的转换,具有全局信息分析能力。这两种方法在 XJTU-SY 轴承数据集中都取得了很好的效果。 将多标签学习应用于旋转轴承的 PHM,为解决复杂故障诊断提供了一种新方法。
3) 标签特征转换: 在 HML-KNN 中,对数据标签信息进行分层,将第一层预测的降解标签创新性地转换为相应样本的四分位数,进入第二层的故障类型判断。与直接使用标签数据(如 0 和 1)作为特征相比,信息转换不仅满足了个性化需求,还将降解信息与故障类型相结合,对数据信息进行了更深入的挖掘。 4) 通用性强: 由于分类过程不受标签组合的影响,当出现标签组合形式发生变化的未知样本时,可以通过算法进行识别。 不同的实验条件检验了算法的性能。在不同的工作条件下,实验设置分为两种类型:使用复合故障数据预测复合故障和使用单故障数据预测复合故障。后者实际上可视为工业故障诊断零点学习方向上的一次尝试。 尽管如此,检测结果验证了该算法强大的泛化能力。

数据介绍:有四个故障元素:内滚道、外滚道、保持架和球。有些轴承同时存在多种故障,如表 I 所示
数据处理:数据处理 在数据处理部分,我们进行了两部分工作。首先,人为划定退化阶段的标签。其次,提取轴承数据的时序特征。

二元相关性的基本思想是将具有 q 个标签的多标签学习问题转换为 q 个独立的二元分类问题。

Personalized Binary Relevance
PBR 算法的工作流程如图 4 所示。 PBR 算法建模步骤如下。 步骤 1(数据预处理): 提取信号的八个时序特征。 第 2 步(相似性搜索): 使用 DTW 检验处理后数据的相似性,然后选择最接近的 200 个数据进行个性化建模。
步骤 3(二元相关性): 为确保每组数据至少包含两个标签,我们人为地为每组标签赋予含义。前两个标签代表轴承的退化程度: **标签 1 代表退化阶段,标签 2 代表临界阶段。**后三个标签代表轴承的故障元素: **标签 3 代表外圈故障,标签 4 代表内圈故障,标签 5 代表保持架故障。**由于健康阶段无故障,滚动体故障样本较少,因此此处不予考虑。当标签被划分后,相应的标签会被放入五个分类器中进行学习。 为了追求分类速度,选择极限学习机(ELM)[42]、[43] 作为分类器。事实上,完全可以使用其他经典分类器,如 SVM 和 CNN,但这也会相应影响计算速度,所以本文没有使用。 第 4 步(预测结果): 根据分类结果,给测试数据一个预测标签集来分析结果。 与其他用于复合故障诊断的方法相比,PBR 的个性化程度高,对分类器的限制少,也能有效识别未知故障。
在这里插入图片描述
在这里插入图片描述

B. HML-KNN
本文提出的 HML-KNN 算法是对 ML-KNN 的改进。主要改进包括三个步骤。 第一步(分类处理): 对原分类模型进行分类,将一级分类器得到的预测标签作为新特征放入二级分类器中,充分挖掘标签的关联关系。 第 2 步(特征转换): 将一级标签信息转换为标签特征。放入二级分类器的标签特征不是原始标签,而是四分位数的标签。标签“-1 ”被转换为下四分位数,标签 “1 ”被转换为上四分位数。处理后的标签特征是绝对个性化的,避免了原始标签造成的过拟合或欠拟合等问题。 第三步:算法升级。HML-KNN 算法是一种考虑到全局标签信息的高阶算法。第二层的标签与第一层的每个标签相关。多标签学习的核心思想是挖掘标签之间的相关性,提高结果的可解释性。与一阶算法相比,高阶算法使用的数据更多,启发性也更强。 HML-KNN 的算法结构如图 5 所示。 我们将标签序列分为两级,划分标准可以根据数据的物理意义来指定。例如,样本特征序列为 {6,47,49,15,42,41,7},包含六个标签,前三个分为第一级,后三个分为第二级。我们将第一级标签发送给贝叶斯分类器,得到第一级三个估计标签,如**{1,1,-1},并将其转换为四分位形式,即{47,47,7},从而得到新的样本特征序列**。新的样本特征序列被发送到第二级分类器,以获得第二级估计标签。将第一级和第二级的估计标签连接起来,就得到了最终的标签估计序列。 HML-KNN 算法作为一种高级算法,可以挖掘标签之间更深层次的相关性。特别是当标签信息从不同方面描述样本时,分类过程将更有助于提高算法的准确性和可解释性。{6,47,49,15,42,41,7,47,47,7}。新的样本特征序列被发送给二级分类器,以获得二级分类器的特征序列{6,47,49,15,42,41,7,47,47,7}。
在这里插入图片描述

在这里插入图片描述

实验和结果部分:
B. 多标签学习: 多标签学习算法的实验比较 为了涵盖三种工作条件,本实验将每种工作条件的前三个数据集作为训练数据,后两个数据集作为测试数据。最后,九组数据被用作训练集,六组数据被用作测试集。与每个测试样本最接近的十个样本被用于建模。为了使实验比较更加严谨,HML-KNN 不仅与 ML-KNN 进行了比较,还与其他个性化搜索算法的结果进行了比较。PBR 与经典的 BR 算法进行了比较。PBR 和 BR 都选择 ELM 作为子分类器。结果如表 IV 所示。 表 II 中粗体部分为本研究提出的两种算法,其他算法为对比算法。由于 PBR 算法不考虑降解过程中的正常阶段,因此 PBR 和 BR 的第一分类结果用 “NA ”表示。PBR 和 BR 没有分级处理环节,不需要使用退化信息来辅助判断故障类型。当最终预测标签序列中降级阶段和临界阶段的标签均为 0 时,设备自然处于正常阶段。为了减少计算量,第一组实验可以省略。

三、IE -A deep learning model for bearing fault diagnosis based on convolution neural network with multi-channel and residual network

三、基于多通道和残差网络卷积神经网络的轴承故障诊断 Adeep 学习模型

本文提出了一种结合多通道和宽首层结构的新型深度学习模型,并采用 dropout 技术、正则化、批量归一化等方法解决网络结构问题中的过拟合问题,引入残差网络解决网络退化问题。实验结果表明,该模型在西储大学轴承数据集上的平均准确率为 100%,显示了良好的自适应能力。

原始振动信号在时间和频率上有两种不同的表现形式,简单的时域[1]或频域[2]统计分析无法有效反映轴承的工作状态和类型。

与单通道顺序结构相比,多通道一维 CNN 第一卷积层使用的卷积核是不同数量和宽度的卷积核,卷积核的大小和步长应遵循 “大卷积,小步长;小卷积,大步长 ”的设计。传统一维 CNN 的结构大多是单通道连续结构,这种结构很大程度上依赖于第一层卷积核提取的特征,而第一层卷积核的宽度都是相同的,因此极大地限制了深度特征的多样性。本研究提出了一级多尺度 CNN 模型,利用多通道获取不同视场感知下不同尺度的 lo cal 信息。 网络结构如图 1 所示。
考虑到本文使用的输入长度为 2048,因此选择三个通道进行特征提取。 考虑到卷积步长和参数数量,使用的卷积核宽度为其长度的 1/8,也就是最宽的卷积 核乘积为 256,其他两个卷积核按 1:2:4 的比例确定。为了确保最终卷积结果的尺度一致,卷积步长按照 4:2:1 的比例确定。

在这里插入图片描述多通道的使用可以在不同的感知领域获得不同尺度的局部信息,并增强本研究中模型的自适应能力。

在这里插入图片描述

四、Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion_2020年

四、利用深度学习多模型融合实现化工过程的智能故障诊断

本文提出了一种使用深度学习多模型融合的故障诊断方法。与以前的深度学习诊断方法不同,这种方法使用长期短期记忆 (LSTM) 和卷积神经网络 (CNN) 单独提取特征提取出的特征随后进行融合,并被 MLP 用于进一步的特征压缩和提取,最终获得诊断结果。LSTM 具有长期记忆能力,提取的特征具有时间特性,而 CNN 则具有良好的空间特征提取效果。提出的方法将这两个方面融合在一起,以确保网络最终提取出具有时间和空间特性的特征,从而提高网络的诊断性能。 最后,本文使用 TE 化学过程和一个工业焦炉过程进行了模拟测试。
在这里插入图片描述

选择 Adam 作为优化器,he_normal 作为权重初始化方法。激活函数为 ELU,学习率初始值设为 0.001,随着训练的进行,每 45 个训练历元的训练量减少到原来 150 个训练历元的十分之一,批量大小为 64。

对比实验 1 由三层一维 CNN 和最大池化层交替堆叠组成,最后形成 MLP 路径。三个控制核的数量分别为 32、64 和 128,大小为 1×3。对比实验 2 由 LSTM 路径网络和 MLP 路径网络组成,最后一层为 softmax 分类器输出层。对比实验 3 是由 5 个 FC 层与 dropout 层交替组成的 MLP 网络,最后一层是 softmax 分类器诊断输出层。对比实验 4 与案例 1 相同。它是一个由 CNN 和 LSTM 组成的串联网络。由一个 3 层 CNN 网络和一个 2 层 LSTM 网络组成。最后,MLP 路径网络执行最终的特征提取和输出。 所有 FC 层、CNN 层和 LSTM 层均使用 L2 正则化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YJII

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值