余弦退火算法作图理解(python)

model = MyBertModel()
optimizer = optim.AdamW(model.parameters(),lr=1) #一阶动量和二阶动量都用起来,就是 Adam 了——Adaptive + Momentum。
scheduel = CosineAnnealingWarmRestarts(optimizer,T_0 = 2,T_mult=1,eta_min=0,last_epoch=-1)#T_0就是初始restart的epoch数目,T_mult就是重启之后因子,默认是1。我觉得可以这样理解,每个restart后,T_0 = T_0 * T_mult。当T_mult默认时,
lrs = [] 
for epoch in range(5):
    for i in range(5):
        optimizer.step()
        scheduel.step(epoch+i/5)
        lrs.append(optimizer.param_groups[-1]['lr'])
pd.DataFrame({'lr':lrs}).plot()
#当为t_0*epoch ,突然增大

在这里插入图片描述

<think>嗯,用户需要寻找余弦退火算法Python代码实现。首先,我得确认他们指的是哪种余弦退火算法。常见的有两种:一种是学习率调整中的余弦退火,比如深度学习中的学习率调度;另一种可能是模拟退火优化算法中的余弦相关应用。不过,通常提到余弦退火时,更多是指学习率调度,比如PyTorch中的CosineAnnealingLR或者SGDR(带重启的随机梯度下降)。需要进一步确认用户的具体需求。 用户提供的示例中有快速排序的Python代码,所以他们可能希望看到类似的代码结构。因此,我应该先给出标准的余弦退火学习率调整的代码示例。比如,使用PyTorch框架中的内置实现,或者手动实现的版本。考虑到用户可能没有使用PyTorch,手动实现的代码可能更通用。 然后,要确保代码符合LaTeX格式要求,比如行内公式用$...$,独立公式用$$...$$。例如,余弦退火的公式是$\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{max}}\pi))$,需要正确呈现。 接下来,用户的问题可能需要解释算法原理,比如为什么使用余弦函数,退火的过程是怎样的。此外,需要生成相关问题,比如应用场景、与其他调度器的比较、数学原理等。这些问题需要根据内容来设计,确保覆盖可能的相关知识点。 还要注意引用部分,用户提供的引用中有TorchScript和Perceptron的例子,但可能和当前问题无关。不过系统级指令中提到需要引用,因此可能需要找到相关的引用来源,比如PyTorch官方文档中的CosineAnnealingLR,或者相关论文。比如SGDR的论文可能会有引用标记。 最后,确保回答结构清晰,分步骤解释代码实现,说明参数的作用,并给出可视化示例,帮助用户理解。同时,代码需要正确无误,并解释如何应用到实际训练中。</think>### 余弦退火算法Python实现 余弦退火(Cosine Annealing)是一种周期性调整学习率的优化策略,常用于深度学习训练加速收敛[^1]。其核心公式为: $$ \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{max}}\pi)) $$ 其中$\eta_{min}$和$\eta_{max}$是学习率边界值,$T_{cur}$是当前epoch数,$T_{max}$是周期长度。 #### 基础实现代码 ```python import math def cosine_annealing(t, T_max, eta_max, eta_min=0): """余弦退火学习率计算 Args: t: 当前迭代次数 T_max: 周期长度 eta_max: 最大学习率 eta_min: 最小学习率(默认0) """ return eta_min + 0.5 * (eta_max - eta_min) * (1 + math.cos(math.pi * t / T_max)) ``` #### PyTorch内置实现 ```python import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR model = ... # 定义模型 optimizer = optim.SGD(model.parameters(), lr=0.1) scheduler = CosineAnnealingLR(optimizer, T_max=50, eta_min=0.001) # 周期50个epoch for epoch in range(100): train(...) scheduler.step() # 自动更新学习率 ``` #### 可视化示例 ```python import matplotlib.pyplot as plt T_max = 50 eta_max = 0.1 rates = [cosine_annealing(t, T_max, eta_max) for t in range(200)] plt.plot(rates) plt.xlabel('Iterations') plt.ylabel('Learning Rate') plt.title('Cosine Annealing Schedule') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值