Windows系统下TensorFlow-GPU 安装
首先,GPU要能支持TensorFlow;其次,重要事情说三遍,慎重选择版本!慎重选择版本!慎重选择版本!!!这里的版本,包括Python版本、TensorFlow版本、cuda版本、cuDnn版本。
版本之间的关系参考Build from source on Windows,部分截图如下:
安装anaconda
使用anaconda安装运行环境
创建好虚拟环境,安装常见包,包括numpy、tensorflow、matplotlib。
安装cuda
通过cuda下载链接下载确定版本的cuda,建议下载local版本,运行安装。
通过在命令提示符窗口中运行 [nvcc -V] 命令判断cuda是否运行成功,若返回版本号,则说明成功。
安装cuDnn
通过cudnn下载链接下载确定版本的cuDnn,解压后,将cuda目录复制到cuda安装目录下(默认为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v版本号\)。
将cuda目录中的bin目录添加到环境变量PATH中,即在PATH变量中添加C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v版本号\cuda\bin,即可。
测试
执行如下代码:
import tensorflow as tf
tf.test.is_gpu_available()
若返回True,则说明GPU版tensorflow安装成功,否则,安装失败。
其它
若安装失败,首先确认上述过程是否执行正确,其次,可以尝试降低版本号。
目前,在GTX 1070 Ti上,可用Python3.7+TensorFlow2.1+cuda10.1+cuDnn7.6.5。